本文介绍了matplotlib:在 hist2d 中记录转换计数的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
在matplotlib中绘制二维直方图时,是否有一种简单的方法来获取对数转换后的计数?与 pyplot.hist
方法不同,pyplot.hist2d
方法似乎没有有一个log参数.
Is there a simple way to get log transformed counts when plotting a two dimensional histogram in matplotlib? Unlike the pyplot.hist
method, the pyplot.hist2d
method does not seem to have a log parameter.
当前我正在执行以下操作:
Currently I'm doing the following:
import numpy as np
import matplotlib as mpl
import matplotlib.pylab as plt
matrix, *opt = np.histogram2d(x, y)
img = plt.imshow(matrix, norm = mpl.colors.LogNorm(), cmap = mpl.cm.gray,
interpolation="None")
其中绘制了预期的直方图,但轴标签显示了bin的索引,因此没有预期的值.
Which plots the expected histogram, but the axis labels show the indices of the bins and thus not the expected value.
推荐答案
有点尴尬,不过我问题的答案其实在 docstring
的相应代码:
It's kind of embarrassing, but the answer to my question is actually in the docstring
of the corresponding code:
Notes
-----
Rendering the histogram with a logarithmic color scale is
accomplished by passing a :class:`colors.LogNorm` instance to
the *norm* keyword argument. Likewise, power-law normalization
(similar in effect to gamma correction) can be accomplished with
:class:`colors.PowerNorm`.
所以这是有效的:
import matplotlib as mpl
import matplotlib.pylab as plt
par = plt.hist2d(x, y, norm=mpl.colors.LogNorm(), cmap=mpl.cm.gray)
这篇关于matplotlib:在 hist2d 中记录转换计数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!