本文介绍了将JSON字符串解析为numpy数组的最快方法的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有巨大的json对象,其中包含2D坐标列表,我需要将其转换为numpy数组进行处理.
I have huge json objects containing 2D lists of coordinates that I need to transform into numpy arrays for processing.
但是在np.array()
之后再使用json.loads
太慢了.
However using json.loads
followed with np.array()
is too slow.
有没有办法提高从json创建numpy数组的速度?
Is there a way to increase the speed of creation of numpy arrays from json?
import json
import numpy as np
json_input = '{"rings" : [[[-8081441.0, 5685214.0], [-8081446.0, 5685216.0], [-8081442.0, 5685219.0], [-8081440.0, 5685211.0], [-8081441.0, 5685214.0]]]}'
dict = json.loads(json_input)
numpy_2d_arrays = [np.array(ring) for ring in dict["rings"]]
我会采取任何解决方案!
I would take any solution whatsoever!
推荐答案
由于JSON语法与Python语法非常接近,因此建议您使用ast.literal_eval
.可能会更快...
Since JSON syntax is really near to Python syntax, I suggest you to use ast.literal_eval
. It may be faster…
import ast
import numpy as np
json_input = """{"rings" : [[[-8081441.0, 5685214.0],
[-8081446.0, 5685216.0],
[-8081442.0, 5685219.0],
[-8081440.0, 5685211.0],
[-8081441.0, 5685214.0]]]}"""
rings = ast.literal_eval(json_input)
numpy_2d_arrays = [np.array(ring) for ring in rings["rings"]]
尝试一下.告诉我们.
这篇关于将JSON字符串解析为numpy数组的最快方法的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!