本文介绍了寻找素数与埃拉托色尼的筛(原文:有没有prepare这阵更好的办法?)的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

限时删除!!

注意:版本2,下面,使用埃拉托色尼的筛。有几个答案是什么我原来问的帮助。我选择了埃拉托色尼筛的方法,实现了它,并适当改变了问题的标题和标签。感谢大家谁帮助!

简介

我写的产生为int的含质数的数组比指定的上限少这个奇特的小方法。它工作得很好,但我有一个问题。

的方法

 私有静态诠释[] generatePrimes(INT最大值){
    INT [] TEMP =新INT [MAX];
    温度[0] = 2;
    INT索引= 1;
    INT素= 1;
    布尔isPrime = FALSE;
    而((黄金+ = 2)< =最大值){
        isPrime = TRUE;
        的for(int i = 0; I<指数;我++){
            如果(素%temp [I] == 0){
                isPrime = FALSE;
                打破;
            }
        }
        如果(isPrime){
            临时[指数++] =黄金;
        }
    }
    INT [] =素数的新INT [指数]
    而( - 索引> = 0){
        素数[指数] =气温[指数]
    }
    返回素数;
}

我的关注

我担心的是我创建的数组是元素的方法将返回的最终数量过于庞大。麻烦的是我不知道的好方法要正确预测质数少于规定数量的多少。

焦点

这是程序如何使用数组。这就是我要加以改进的。


  1. 我创建一个临时数组,它是
    大到足以容纳每一个数字
    不到极限。

  2. 我生成素数,而
    我有多少保留计数
    产生的。

  3. 我提出一个新的数组,它是正确的
    维持有刚刚总理
    数字。

  4. 我复制的每个素数从
    巨大的数组的数组
    正确的尺寸。

  5. 我返回正确的数组
    维保存刚才总理
    我生成的数字。

问题


  1. 我可以复制整个块(一次)的
    温度[] 有非零
    元素素数[]
    而不必通过迭代
    两个数组复制的元素
    一个接一个?

  2. 是否有任何数据结构
    行为像元的阵列
    可以成长为元素的添加,
    而不是要求的尺寸
    在实例?是什么
    相比性能下降
    使用原语的数组?


2版(感谢):

 私有静态诠释[] generatePrimes(INT最大值){
    INT [] TEMP =新INT [MAX];
    温度[0] = 2;
    INT索引= 1;
    INT素= 1;
    布尔isPrime = FALSE;
    而((黄金+ = 2)< =最大值){
        isPrime = TRUE;
        的for(int i = 0; I<指数;我++){
            如果(素%temp [I] == 0){
                isPrime = FALSE;
                打破;
            }
        }
        如果(isPrime){
            临时[指数++] =黄金;
        }
    }
    返回Arrays.copyOfRange(温度,0,索引);
}


3版(感谢),它使用的:

 私有静态诠释[] generatePrimes(INT最大值){
    布尔[] = isComposite新的布尔[MAX + 1];
    的for(int i = 2; I * I< = MAX;我++){
        如果(!isComposite [I]){
            对于(INT J =我;我* J< = MAX; J ++){
                isComposite [我* J] =真;
            }
        }
    }
    INT numPrimes = 0;
    的for(int i = 2; I< = MAX;我++){
        如果numPrimes ++(isComposite [I]!);
    }
    INT [] =素数的新INT [numPrimes]
    INT索引= 0;
    的for(int i = 2; I< = MAX;我++){
        (!isComposite [I]),如果素数[指数++] =我;
    }
    返回素数;
}


解决方案

您找到素数的方法,通过阵列的每一个元素与每一个可能的因素是比较可怕效率低下。你可以做一个筛一次的整个阵列上极大改善。除了做少得多比较,它也使用除而不是分裂。司是方法要慢。

Note: Version 2, below, uses the Sieve of Eratosthenes. There are several answers that helped with what I originally asked. I have chosen the Sieve of Eratosthenes method, implemented it, and changed the question title and tags appropriately. Thanks to everyone who helped!

Introduction

I wrote this fancy little method that generates an array of int containing the prime numbers less than the specified upper bound. It works very well, but I have a concern.

The Method

private static int [] generatePrimes(int max) {
    int [] temp = new int [max];
    temp [0] = 2;
    int index = 1;
    int prime = 1;
    boolean isPrime = false;
    while((prime += 2) <= max) {
        isPrime = true;
        for(int i = 0; i < index; i++) {
            if(prime % temp [i] == 0) {
                isPrime = false;
                break;
            }
        }
        if(isPrime) {
            temp [index++] = prime;
        }
    }
    int [] primes = new int [index];
    while(--index >= 0) {
        primes [index] = temp [index];
    }
    return primes;
}

My Concern

My concern is that I am creating an array that is far too large for the final number of elements the method will return. The trouble is that I don't know of a good way to correctly guess the number of prime numbers less than a specified number.

Focus

This is how the program uses the arrays. This is what I want to improve upon.

  1. I create a temporary array that islarge enough to hold every numberless than the limit.
  2. I generate the prime numbers, whilekeeping count of how many I havegenerated.
  3. I make a new array that is the rightdimension to hold just the primenumbers.
  4. I copy each prime number from thehuge array to the array of thecorrect dimension.
  5. I return the array of the correctdimension that holds just the primenumbers I generated.

Questions

  1. Can I copy the whole chunk (at once) oftemp[] that has nonzeroelements to primes[]without having to iterate throughboth arrays and copy the elementsone by one?
  2. Are there any data structures thatbehave like an array of primitivesthat can grow as elements are added,rather than requiring a dimensionupon instantiation? What is theperformance penalty compared tousing an array of primitives?


Version 2 (thanks to Jon Skeet):

private static int [] generatePrimes(int max) {
    int [] temp = new int [max];
    temp [0] = 2;
    int index = 1;
    int prime = 1;
    boolean isPrime = false;
    while((prime += 2) <= max) {
        isPrime = true;
        for(int i = 0; i < index; i++) {
            if(prime % temp [i] == 0) {
                isPrime = false;
                break;
            }
        }
        if(isPrime) {
            temp [index++] = prime;
        }
    }
    return Arrays.copyOfRange(temp, 0, index);
}


Version 3 (thanks to Paul Tomblin) which uses the Sieve of Erastosthenes:

private static int [] generatePrimes(int max) {
    boolean[] isComposite = new boolean[max + 1];
    for (int i = 2; i * i <= max; i++) {
        if (!isComposite [i]) {
            for (int j = i; i * j <= max; j++) {
                isComposite [i*j] = true;
            }
        }
    }
    int numPrimes = 0;
    for (int i = 2; i <= max; i++) {
        if (!isComposite [i]) numPrimes++;
    }
    int [] primes = new int [numPrimes];
    int index = 0;
    for (int i = 2; i <= max; i++) {
        if (!isComposite [i]) primes [index++] = i;
    }
    return primes;
}
解决方案

Your method of finding primes, by comparing every single element of the array with every possible factor is hideously inefficient. You can improve it immensely by doing a Sieve of Eratosthenes over the entire array at once. Besides doing far fewer comparisons, it also uses addition rather than division. Division is way slower.

这篇关于寻找素数与埃拉托色尼的筛(原文:有没有prepare这阵更好的办法?)的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

1403页,肝出来的..

09-06 09:18