使用OpenCV在Python中计算图像中黑色像素的数量

使用OpenCV在Python中计算图像中黑色像素的数量

本文介绍了使用OpenCV在Python中计算图像中黑色像素的数量的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我在Python中具有以下测试代码以读取,设置阈值和显示图像:

I have the following test code in Python to read, threshold and display an image:

import cv2
import numpy as np
from matplotlib import pyplot as plt

# read image
img = cv2.imread('slice-309.png',0)
ret,thresh = cv2.threshold(img,0,230, cv2.THRESH_BINARY)
height, width = img.shape
print "height and width : ",height, width
size = img.size
print "size of the image in number of pixels", size

# plot the binary image
imgplot = plt.imshow(img, 'gray')
plt.show()

我想计算带有特定标签(例如黑色)的图像中的像素数.我怎样才能做到这一点 ?我看过OpenCV的教程,但没有找到任何帮助:-(

I would like to count the number of pixels within the image with a certain label, for instance black.How can I do that ? I looked at tutorials of OpenCV but did not find any help :-(

谢谢!

推荐答案

对于黑色图像,您将获得像素总数(行*列),然后从 cv2.countNonZero(mat) .

For black images you get the total number of pixels (rows*cols) and then subtract it from the result you get from cv2.countNonZero(mat).

对于其他值,您可以使用 cv2.inRange() 返回一个二进制掩码,该掩码显示所需颜色/标签/值的所有位置,然后使用cv2.countNonZero计数其中的多少.

For other values, you can create a mask using cv2.inRange() to return a binary mask showing all the locations of the color/label/value you want and then use cv2.countNonZero to count how many of them there are.

更新(根据Miki的评论):

UPDATE (Per Miki's comment):

当尝试查找具有特定值的元素的数量时,Python允许您跳过cv2.inRange()调用并执行以下操作:

When trying to find the count of elements with a particular value, Python allows you to skip the cv2.inRange() call and just do:

cv2.countNonZero(img == scalar_value)

这篇关于使用OpenCV在Python中计算图像中黑色像素的数量的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

07-27 20:41