库将每个矩阵列乘以每个向量元素

库将每个矩阵列乘以每个向量元素

本文介绍了使用Eigen C ++库将每个矩阵列乘以每个向量元素的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我需要使用本征C ++库将每个矩阵列乘以每个矢量元素.我尝试了colwise,但没有成功.

I need to multiply each matrix column by each vector element using Eigen C++ library. I tried colwise without success.

样本数据:

Eigen::Matrix3Xf A(3,2); //3x2
A << 1 2,
     2 2,
     3 5;

Eigen::Vector3f V = Eigen::Vector3f(2, 3);

//Expected result
C = A.colwise()*V;

//C
//2 6,
//4 6,
//6 15
//this means C 1st col by V first element and C 2nd col by V 2nd element.

矩阵A可以具有3xN和V Nx1.含义(列数x行数).

Matrix A can have 3xN and V Nx1. Meaning (cols x rowls).

推荐答案

这就是我要做的:

Eigen::Matrix3Xf A(3, 2);  // 3x2
A << 1, 2, 2, 2, 3, 5;

Eigen::Vector3f V = Eigen::Vector3f(1, 2, 3);

const Eigen::Matrix3Xf C = A.array().colwise() * V.array();
std::cout << C << std::endl;

示例输出:

 1  2
 4  4
 9 15

说明

您接近了,诀窍是使用.array()进行广播乘法.

Explanation

You were close, the trick is to use .array() to do broadcasting multiplications.

colwiseReturnType没有.array()方法,因此我们必须在A的数组视图上进行逐级提示.

colwiseReturnType doesn't have a .array() method, so we have to do our colwise shenanigans on the array view of A.

如果要计算两个向量的按元素乘积(最酷的猫称之为 Hadamard产品),您可以这样做

If you want to compute the element-wise product of two vectors (The coolest of cool cats call this the Hadamard Product), you can do

Eigen::Vector3f a = ...;
Eigen::Vector3f b = ...;
Eigen::Vector3f elementwise_product = a.array() * b.array();

以上代码以列方式执行的操作.

Which is what the above code is doing, in a columnwise fashion.

要解决行的情况,您可以使用.rowwise(),并且需要额外的transpose()来使之适合

To address the row case, you can use .rowwise(), and you'll need an extra transpose() to make things fit

Eigen::Matrix<float, 3, 2> A;  // 3x2
A << 1, 2, 2, 2, 3, 5;

Eigen::Vector2f V = Eigen::Vector2f(2, 3);

// Expected result
Eigen::Matrix<float, 3, 2> C = A.array().rowwise() * V.transpose().array();
std::cout << C << std::endl;

示例输出:

 2  6
 4  6
 6 15

这篇关于使用Eigen C ++库将每个矩阵列乘以每个向量元素的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

07-27 17:45