本文介绍了在python中添加两个形状不同的`csc`稀疏矩阵的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

因此,我需要将两个具有不同形状的csc矩阵加在一起.矩阵如下所示:

So I have two csc matrices of different shapes that I need to add together. The matrices look like this:

current_flows = (7005, 1001)    50.0
(8259, 1001)    65.0
(14007, 1001)   45.0
(9971, 1002)    80.0
: :
(69003, 211148) 0.0

result_flows = (7005, 1001) 40
(14007, 1001)   20
(9971, 1002)    35
: :
(71136, 71137)  90

final_flows = current_flows + result_flows

如某些行和列ID所示:(7005, 1001), (14007, 1001), (9971, 1002)矩阵确实具有相同的元素.尽管它们的形状不同,但基于它们的最终行和列ID.

As illustrated by some of the row and column ID's shown: (7005, 1001), (14007, 1001), (9971, 1002) the matrices do have elements in common. Based on their final row and column ID's though they are of different shape.

我想将两个矩阵加在一起,同时保留较大矩阵(current_flows)的形状,并保持current_flows的值相同,其中result_flows没有匹配的行和列ID current_flows.因此,即使result_flows仅扩展到(71136, 71137)

I would like to add the two matrices together, while preserving the shape of the larger matrix (current_flows) and keeping the values of current_flows the same where result_flows does not have a row and column ID that matches current_flows. So, final_flows will have row and column indexes extending to: (69003, 211148) even though result_flows only extends to (71136, 71137)

因此,我希望输出为:

final_flows =  (7005, 1001) 90.0
(8259, 1001)    65.0
(14007, 1001)   65.0
(9971, 1002)    115.0
: :
(71136, 71137)  90
(69003, 211148) 0.0

让我知道您是否需要进一步的澄清,谢谢!

Let me know if you'd like any further clarification, thanks!

推荐答案

通过coo定义矩阵或输入的coo样式(data,(row,col))时,将对重复项进行求和.刚度矩阵的创建者(用于pde解)经常利用这一点.

When defining a matrix via coo, or the coo style of input, (data,(row,col)), duplicate entries are summed. Creators of stiffness matrices (for pde solutions) often take advantage of this.

这是使用该功能的函数.我将矩阵转换为coo格式(如果需要),连接它们的属性,并建立一个新的矩阵.

This is a function that uses that. I convert the matrices to coo format (if needed), concatenate their attributes, and build a new matrix.

def with_coo(x,y):
    x=x.tocoo()
    y=y.tocoo()
    d = np.concatenate((x.data, y.data))
    r = np.concatenate((x.row, y.row))
    c = np.concatenate((x.col, y.col))
    C = sparse.coo_matrix((d,(r,c)))
    return C

以@Vadim的示例为例:

With @Vadim's examples:

In [59]: C_csc=current_flows.tocsc()
In [60]: R_csc=result_flows.tocsc()

In [61]: with_coo(C_csc, R_csc).tocsc().A
Out[61]:
array([[ 0,  0,  1],
       [-1,  0,  4],
       [ 0, -2,  0],
       [ 3,  0,  0]], dtype=int32)

在进行计时时,我们必须要小心,因为格式转换是不平凡的,例如

When making timings we have to be careful because format conversion are nontrivial, e.g.

In [70]: timeit  C_csc.tocoo()
10000 loops, best of 3: 128 µs per loop

In [71]: timeit  C_csc.todok()
1000 loops, best of 3: 258 µs per loop

瓦迪姆的两个选择

def with_dok(x, y):
    for k in y.keys():  # no has_key in py3
        if k in x:
           x[k] += y[k]
        else:
           x[k] = y[k]
    return x

def with_update(x,y):
    x.update((k, v+x.get(k)) for k, v in y.items())
    return x

csc格式开始:

In [74]: timeit with_coo(C_csc,R_csc).tocsc()
1000 loops, best of 3: 629 µs per loop

In [76]: timeit with_update(C_csc.todok(),R_csc.todok()).tocsc()
1000 loops, best of 3: 1 ms per loop

In [77]: timeit with_dok(C_csc.todok(),R_csc.todok()).tocsc()
1000 loops, best of 3: 1.12 ms per loop

我想我的coo方法会更好地扩展-但这只是一个猜测.

I'm guessing that my coo approach will scale better - but that's just a guess at this point.

将转换排除在外,dok更新看起来更好. y只有2个项目,并且不进行任何复制-直接更改x.

Taking conversions out of the picture, the dok update looks better. y has only 2 items, and it does not make any copies - it changes x directly.

In [78]: %%timeit x=C_csc.todok(); y=R_csc.todok()
   ....: with_update(x, y)
   ....:
10000 loops, best of 3: 33.6 µs per loop

In [79]: %%timeit x=C_csc.tocoo(); y=R_csc.tocoo()
with_coo(x, y)
   ....:
10000 loops, best of 3: 138 µs per loop

================

================

dok_matrix__add__方法包含(如果other也是dok).有评论想知道他们是否需要检查shape.

The __add__ method for dok_matrix contains (if other is also dok). There's a comment wondering whether they need to check shape.

       new = dok_matrix(self.shape, dtype=res_dtype)
        new.update(self)
        for key in other.keys():
            new[key] += other[key]

[如果我先更改y的形状,例如y._shape = x.shape.这很麻烦,并且只能在原始形状的合理范围内使用.并且可能不会比with_update方法快. dokcsrcsc更适合这种形状更改.]

[I can get around the shape check in x+y if I first change the shape of y, e.g. y._shape = x.shape. This is kludgy and only works within rational limits of the original shapes. And might not be faster than the with_update approach. dok is more amenable to this sort of shape change than csr or csc.]

如果other不是dok,则显示self.tocsc()+other.

对于匹配的形状,总和为

For matching shapes, the summation times are

In [91]: timeit current_flows+current_flows
1000 loops, best of 3: 413 µs per loop

In [92]: timeit C_csc+C_csc
1000 loops, best of 3: 223 µs per loop

这篇关于在python中添加两个形状不同的`csc`稀疏矩阵的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-12 17:00