本文介绍了聚类相似的时间序列?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有10-20k个不同的时间序列(24维数据-一天中的每个小时的一列)之间的某个地方,我对聚类的时间序列表现出大致相同的活动模式感兴趣.

I have somewhere between 10-20k different time-series (24 dimensional data -- a column for each hour of the day) and I'm interested in clustering time series that exhibit roughly the same patterns of activity.

我最初开始实施动态时间规整(DTW),原因是:

I had originally started to implement Dynamic Time Warping (DTW) because:

  1. 并非我所有的时间序列都完全对齐
  2. 出于我的目的,两个略有偏移的时间序列应被视为相似
  3. 形状相同但比例不同的两个时间序列应被视为相似

我对DTW遇到的唯一问题是,它似乎无法很好地扩展-在500x500距离矩阵上的 fastdtw 花费了大约30分钟.

The only problem I had run into with DTW was that it did not appear to scale well -- fastdtw on a 500x500 distance matrix took ~30 minutes.

还有哪些其他方法可以帮助我满足条件2&3?

What other methods exist that would help me satisfy conditions 2 & 3?

推荐答案

如果将时间序列分解为趋势,季节性和残差,ARIMA可以胜任.之后,使用K最近邻算法.但是,基本上由于ARIMA,计算成本可能会很高.

ARIMA can do the job, if you decompose the time series into trend, seasonality and residuals. After that, use a K-Nearest Neighbor algorithm. However, computational cost may be expensive, basically due to ARIMA.

在ARIMA中:

from statsmodels.tsa.arima_model import ARIMA

model0 = ARIMA(X, dates=None,order=(2,1,0))
model1 = model0.fit(disp=1)

decomposition = seasonal_decompose(np.array(X).reshape(len(X),),freq=100)
### insert your data seasonality in 'freq'

trend = decomposition.trend
seasonal = decomposition.seasonal
residual = decomposition.resid

作为@Sushant评论的补充,您可以分解时间序列,并可以检查4个图中的一个或全部的相似性:数据,季节性,趋势和残差.

As a complement to @Sushant comment, you decompose the time series and can check for similarity in one or all of the 4 plots: data, seasonality, trend and residuals.

然后是一个数据示例:

import numpy as np
import matplotlib.pyplot as plt
sin1=[np.sin(x)+x/7 for x in np.linspace(0,30*3,14*2,1)]
sin2=[np.sin(0.8*x)+x/5 for x in np.linspace(0,30*3,14*2,1)]
sin3=[np.sin(1.3*x)+x/5 for x in np.linspace(0,30*3,14*2,1)]
plt.plot(sin1,label='sin1')
plt.plot(sin2,label='sin2')
plt.plot(sin3,label='sin3')
plt.legend(loc=2)
plt.show()
X=np.array([sin1,sin2,sin3])

from sklearn.neighbors import NearestNeighbors
nbrs = NearestNeighbors(n_neighbors=2, algorithm='ball_tree').fit(X)
distances, indices = nbrs.kneighbors(X)
distances

您将获得相似之处:

array([[ 0.        , 16.39833107],
       [ 0.        ,  5.2312092 ],
       [ 0.        ,  5.2312092 ]])

这篇关于聚类相似的时间序列?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

07-26 16:40