问题描述
我有以下Haskell脚本,用于计算函数f(x) = (2- x) - (2^3 - x^3/12)
I have the following Haskell script which computes the function f(x) = (2- x) - (2^3 - x^3/12)
calc x = (x - (x ^ 3) / 12)
calc2 x = (calc 2) - (calc x)
calcList1 :: [Float] -> Float
calcList1 l = foldl (+) 0.0 (map calc2 l)
calcList2 :: [Float] -> Float
calcList2 l = foldr (+) 0.0 (map calc2 l)
test1 :: Float -> Float
test1 step = (calcList1 l) - (calcList2 l)
where
l = [0.0,step..2.0]
函数calcList1
和calcList2
在每个列表上运行calc2
函数,然后分别使用foldl
和foldr
对列表求和.我期望两个函数都返回相同的答案,但事实并非如此.
Function calcList1
and calcList2
run calc2
function on each of list and then uses foldl
and foldr
respectively to sum the list. I was expecting both function to return the same answer but it does not.
*Main> test1 0.1
9.536743e-7
*Main> test1 0.01
2.2888184e-5
*Main> test1 0.001
2.4414063e-4
*Main> test1 0.0001
-3.7109375e-2
*Main>
现在我很困惑.我看不到为什么这里必须涉及数字问题.折叠本质上是如何收集在两种情况下都应该相同的每个元素,对吗?
Now I am confused. I can't see why numerical issues has to be involved here. Fold are essentially how ones collect each element which should be same in both cases, right?
推荐答案
通常,添加浮点值的 order 很重要.自己研究的切入点可以是 http://en.wikipedia.org/wiki/Loss_of_significance .总结一下基本警告,以一种过于简化的形式:
In general, the order in which floating point values are added is important. An entry point for own research could be http://en.wikipedia.org/wiki/Loss_of_significance . To summarize the basic caveat, in an oversimplified form:
由于有效位数有限,您必须假设类似
Due to the limited number of significant bits, you have to assume something like
100000000000000000.0 + 1.0 = 100000000000000000.0
浮点计算中的
.因此,在计算时
in floating-point computations. Consequently, when computing
100000000000000000.0
+ 1.0
- 100000000000000000.0
结果将为0.0
-因此与
100000000000000000.0
- 100000000000000000.0
+ 1.0
,结果将为1.0
.
这篇关于Haskell中的foldl和folder的数值问题的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!