问题描述
我尝试使用Keras构建3层RNN.部分代码在这里:
I try to build a 3-layer RNN with Keras. Part of the code is here:
model = Sequential()
model.add(Embedding(input_dim = 91, output_dim = 128, input_length =max_length))
model.add(GRUCell(units = self.neurons, dropout = self.dropval, bias_initializer = bias))
model.add(GRUCell(units = self.neurons, dropout = self.dropval, bias_initializer = bias))
model.add(GRUCell(units = self.neurons, dropout = self.dropval, bias_initializer = bias))
model.add(TimeDistributed(Dense(target.shape[2])))
然后我遇到此错误:
call() missing 1 required positional argument: 'states'
错误详细信息如下:
~/anaconda3/envs/hw3/lib/python3.5/site-packages/keras/models.py in add(self, layer)
487 output_shapes=[self.outputs[0]._keras_shape])
488 else:
--> 489 output_tensor = layer(self.outputs[0])
490 if isinstance(output_tensor, list):
491 raise TypeError('All layers in a Sequential model '
~/anaconda3/envs/hw3/lib/python3.5/site-packages/keras/engine/topology.py in __call__(self, inputs, **kwargs)
601
602 # Actually call the layer, collecting output(s), mask(s), and shape(s).
--> 603 output = self.call(inputs, **kwargs)
604 output_mask = self.compute_mask(inputs, previous_mask)
605
推荐答案
-
请勿在Keras中直接使用Cell类(即
GRUCell
或LSTMCell
).它们是计算单元,由相应的层包裹.而是使用Layer类(即GRU
或LSTM
):
Don't use Cell classes (i.e.
GRUCell
orLSTMCell
) in Keras directly. They are computation cells which are wrapped by the corresponding layers. Instead use the Layer classes (i.e.GRU
orLSTM
):
model.add(GRU(units = self.neurons, dropout = self.dropval, bias_initializer = bias))
model.add(GRU(units = self.neurons, dropout = self.dropval, bias_initializer = bias))
model.add(GRU(units = self.neurons, dropout = self.dropval, bias_initializer = bias))
LSTM
和GRU
使用它们相应的单元格在所有时间步上执行计算.阅读此 SO答案以了解有关它们的区别的更多信息.
The LSTM
and GRU
use their corresponding cells to perform computations over the all timesteps. Read this SO answer to learn more about their difference.
在将多个RNN层彼此堆叠时,需要将其return_sequences
参数设置为True
以便生成每个时间步的输出,该输出随后将由下一个RNN使用层.请注意,您可能会或可能不会在最后一个RNN层上执行此操作(这取决于您的体系结构和您要解决的问题):
When you are stacking multiple RNN layers on top of each other you need to set their return_sequences
argument to True
in order to produce the output of each timestep, which in turn is used by the next RNN layer. Note that you may or may not do this on the last RNN layer (it depends on your architecture and the problem you are trying to solve):
model.add(GRU(units = self.neurons, dropout = self.dropval, bias_initializer = bias, return_sequences=True))
model.add(GRU(units = self.neurons, dropout = self.dropval, bias_initializer = bias, return_sequences=True))
model.add(GRU(units = self.neurons, dropout = self.dropval, bias_initializer = bias))
这篇关于Keras GRUCell缺少1个必需的位置参数:"states"的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!