问题描述
我要寻找关于如何处理下面的计算机视觉问题提出了一些建议。下面是4个样本的眼动跟踪数据集,我有工作的。我想写code需要一个这样的图像,并计算出瞳孔的中心(X,Y)的位置。我目前使用MATLAB,但我愿意接受使用其他软件了。
I am looking for some suggestions on how to approach the following computer vision problem.Below are 4 samples of an eye tracking dataset that I am working with. I would like to write code takes one such image and calculates the (x,y) position of the center of the pupil. I am currently using MATLAB, but I am open to using other software too.
可有人建议我可以用这个任务的方法?这里有一些事情我已经尝试过,但没有工作也很好。
Can someone recommend an approach I could use for this task? Here are some things I already tried but didn't work TOO well.
- 我试图用圆Hough变换,但要求我猜的学生,这是一个有点问题的半径。此外,由于扭曲,瞳孔并不总是完全是一个循环,这可能使这种方法更为困难。
- 在我试图阈值图像基于像素的亮度和用regionprops MATLAB函数来寻找大约(比如)200像素区域的区域具有非常低的偏心率(即圆形越好)。然而,这是该阈值非常敏感,以及眼睛的一些图像比其它基于照明条件更亮。 (请注意下面的4个样品是均归已经和静止图像中的一个比其他一些非常暗随机像素的总体可能是因为亮某处)
任何意见/建议将是AP preciated!
Any comments/suggestions would be appreciated!
编辑:感谢您的评论夜光云。该算法最好应能够确定瞳孔不是图像中,由于是在过去的样本的情况。这不是一个大问题,如果我失去跟踪了一段时间。这更糟糕,如果它给了我错误的答案,但。
thanks for the comment Stargazer. The algorithm should ideally be able to determine that the pupil is not in the image, as is the case for the last sample. It's not a big deal if I lose track of it for a while. It's much worse if it gives me wrong answer though.
推荐答案
我不知道这是否可以帮助你,因为你正在使用的数据集,我不知道你的灵活性/需要改变捕获设备。为以防万一,我们走吧。
I'm not sure if this can help you, because you are using a dataset and I don't know your flexibility/needs to change the capture device. Just in case, let's go.
Morimoto等。用一个漂亮的摄像头的把戏。他们创造了一个摄像头的两套红外线发光二极管的。第一组放在靠近相机镜头。第二个是从透镜放远。使用不同频率,两个LED组被在不同的时刻导通。
Morimoto et al. use a nice camera trick. They created a camera with two sets of infra-red leds. The first set is put near the camera lenses. The second one is put far from the lenses. Using different frequencies, the two leds sets are turned on in different moments.
视网膜会反映该组附近的相机镜头(即关于摄影的红眼问题,同样的事情)的光,产生的亮瞳的。另一组发光二极管会产生的暗瞳的。 比较结果。于是,两个图像之间的简单区别给你一个近乎完美的学生。看一看的方式,森本的等的探索的闪烁的(好的接近视线方向)。
Retina will reflect the light from the set near the camera lenses (that is the same thing about the red eye problem in photography), producing a bright pupil. The other set of leds will produce a dark pupil. Compare the results. So, simple difference between the two images give you a near perfect pupil. Take a look in the way that Morimoto et al. explore the glint (nice to approach sight direction).
这篇关于眼动跟踪:找到瞳孔(X,Y)的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!