问题描述
我循环进入目录中的csv文件,并使用pandas读取它们.对于每个csv文件,我都有一个类别和一个市场.然后,我需要从数据库中获取类别ID和市场ID,这对于此csv文件是有效的.
I loop into csv files in a directory and read them with pandas.For each csv files I have a category and a marketplace.Then I need to get the id of the category and the id of the marketplace from the database which will be valid for this csv file.
finalDf是一个数据帧,其中包含所有csv文件的所有产品,我需要在数据中附加当前csv的数据.
the finalDf is a dataframe containing all the products for all the csv files and I need to append it with data fron the current csv.
使用以下方式检索当前CSV产品的列表:
The list of the products of the current CSV are retrived using:
df['PRODUCT']
我需要将它们附加到finalDf并使用:
I need to append them to the finalDf and I used:
finalDf['PRODUCT'] = finalDf['PRODUCT'].append(df['PRODUCT'],ignore_index=True)
这似乎工作正常,现在我必须将catid和marketid插入finalDf的相应列中.因为catid和marketid在当前的csv文件中是必需的,所以我只需要添加它们,就像df数据框中的行一样多,这就是我要在下面的代码中完成的工作.
This seems to work fine, and I now have to insert catid and marketid to the corresponding columns of the finalDf. because catid and marketid are consitent accross the current csv file I just need to add them as much time as there are rows in the df dataframe, this is what I'm trying to accomplish in the code below.
finalDf = pd.DataFrame(columns=['PRODUCT', 'CAT_ID', 'MARKET_ID'])
finalDf['PRODUCT'] = finalDf.PRODUCT.astype('category')
df = pd.read_csv(filename, header=None,
names=['PRODUCT', 'URL_PRODUCT', 'RANK', 'URL_IMAGE', 'STARS', 'PRICE', 'NAME', 'SNAPDATE',
'CATEGORY', 'MARKETPLACE', 'PARENTCAT', 'LISTTYPE', 'VERSION', 'LEVEL'], sep='\t')
finalDf['PRODUCT'] = finalDf['PRODUCT'].append(df['PRODUCT'],ignore_index=True)
# Here I have a single value to add n times, n corresponding to the number of rows in the dataframe df
catid = 2113
marketid = 13
catids = pd.Series([catid]*len(df.index))
marketids = pd.Series([marketid]*len(df.index))
finalDf['CAT_ID'] = finalDf['CAT_ID'].append(catids, ignore_index=True)
finalDf['MARKET_ID'] = finalDf['MARKET_ID'].append(marketids, ignore_index=True)
print finalDf.head()
PRODUCT CAT_ID MARKET_ID
0 ABC NaN NaN
1 ABB NaN NaN
2 ABE NaN NaN
3 DCB NaN NaN
4 EFT NaN NaN
如您所见,我只有NaN值,而不是实际值.预期输出:
As you can see, I just have NaN values instead of the actual values.expected output:
PRODUCT CAT_ID MARKET_ID
0 ABC 2113 13
1 ABB 2113 13
2 ABE 2113 13
3 DCB 2113 13
4 EFT 2113 13
包含多个csv的
finalDF看起来像:
finalDF containing several csv would look like:
PRODUCT CAT_ID MARKET_ID
0 ABC 2113 13
1 ABB 2113 13
2 ABE 2113 13
3 DCB 2113 13
4 EFT 2113 13
5 SDD 2114 13
6 ERT 2114 13
7 GHJ 2114 13
8 MOD 2114 13
9 GTR 2114 13
10 WLY 2114 13
11 WLO 2115 13
12 KOP 2115 13
有什么主意吗?
谢谢
推荐答案
我终于找到了解决方案,但不知道为什么另一个解决方案不起作用.但这比较简单:
I finally found the solution, don't know why the other one didn't work though.But this one is simpler:
tempDf = pd.DataFrame(columns=['PRODUCT','CAT_ID','MARKET_ID'])
tempDf['PRODUCT'] = df['PRODUCT']
tempDf['CAT_ID'] = catid
tempDf['MARKET_ID'] = 13
finalDf = pd.concat([finalDf,tempDf])
这篇关于将值添加到pandas中的现有列的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!