问题描述
我有一个包含已记录事件的文件.每个条目都有时间和延迟.我对绘制延迟的累积分布函数感兴趣.我对尾巴延迟最感兴趣,因此我希望该图具有对数y轴.我对以下百分位的延迟感兴趣:第90、99、99.9、99.99和99.999.到目前为止,这是我的代码,可以生成常规的CDF图:
I have a file containing logged events. Each entry has a time and latency. I'm interested in plotting the cumulative distribution function of the latencies. I'm most interested in tail latencies so I want the plot to have a logarithmic y-axis. I'm interested in the latencies at the following percentiles: 90th, 99th, 99.9th, 99.99th, and 99.999th. Here is my code so far that generates a regular CDF plot:
# retrieve event times and latencies from the file
times, latencies = read_in_data_from_file('myfile.csv')
# compute the CDF
cdfx = numpy.sort(latencies)
cdfy = numpy.linspace(1 / len(latencies), 1.0, len(latencies))
# plot the CDF
plt.plot(cdfx, cdfy)
plt.show()
我知道我想让情节看起来像什么,但我一直在努力争取.我希望它看起来像这样(我没有生成该图):
I know what I want the plot to look like, but I've struggled to get it. I want it to look like this (I did not generate this plot):
使x轴对数很简单. y轴是给我麻烦的那个.使用set_yscale('log')
不起作用,因为它想使用10的幂.我真的希望y轴具有与此图相同的刻度标签.
Making the x-axis logarithmic is simple. The y-axis is the one giving me problems. Using set_yscale('log')
doesn't work because it wants to use powers of 10. I really want the y-axis to have the same ticklabels as this plot.
如何将我的数据放入这样的对数图中?
How can I get my data into a logarithmic plot like this one?
如果将yscale设置为'log',将ylim设置为[0.1,1],则会得到以下图:
If I set the yscale to 'log', and ylim to [0.1, 1], I get the following plot:
问题在于,从0到1的数据集上的典型对数刻度图将集中在接近零的值上.相反,我想关注于接近1的值.
The problem is that a typical log scale plot on a data set ranging from 0 to 1 will focus on values close to zero. Instead, I want to focus on the values close to 1.
推荐答案
本质上,您需要将以下转换应用于Y
值:-log10(1-y)
.这对y < 1
施加了唯一的限制,因此您应该能够在变换后的图形上使用负值.
Essentially you need to apply the following transformation to your Y
values: -log10(1-y)
. This imposes the only limitation that y < 1
, so you should be able to have negative values on the transformed plot.
这是matplotlib
文档中修改后的示例,其中显示了如何合并自定义转换变成比例":
Here's a modified example from matplotlib
documentation that shows how to incorporate custom transformations into "scales":
import numpy as np
from numpy import ma
from matplotlib import scale as mscale
from matplotlib import transforms as mtransforms
from matplotlib.ticker import FixedFormatter, FixedLocator
class CloseToOne(mscale.ScaleBase):
name = 'close_to_one'
def __init__(self, axis, **kwargs):
mscale.ScaleBase.__init__(self)
self.nines = kwargs.get('nines', 5)
def get_transform(self):
return self.Transform(self.nines)
def set_default_locators_and_formatters(self, axis):
axis.set_major_locator(FixedLocator(
np.array([1-10**(-k) for k in range(1+self.nines)])))
axis.set_major_formatter(FixedFormatter(
[str(1-10**(-k)) for k in range(1+self.nines)]))
def limit_range_for_scale(self, vmin, vmax, minpos):
return vmin, min(1 - 10**(-self.nines), vmax)
class Transform(mtransforms.Transform):
input_dims = 1
output_dims = 1
is_separable = True
def __init__(self, nines):
mtransforms.Transform.__init__(self)
self.nines = nines
def transform_non_affine(self, a):
masked = ma.masked_where(a > 1-10**(-1-self.nines), a)
if masked.mask.any():
return -ma.log10(1-a)
else:
return -np.log10(1-a)
def inverted(self):
return CloseToOne.InvertedTransform(self.nines)
class InvertedTransform(mtransforms.Transform):
input_dims = 1
output_dims = 1
is_separable = True
def __init__(self, nines):
mtransforms.Transform.__init__(self)
self.nines = nines
def transform_non_affine(self, a):
return 1. - 10**(-a)
def inverted(self):
return CloseToOne.Transform(self.nines)
mscale.register_scale(CloseToOne)
if __name__ == '__main__':
import pylab
pylab.figure(figsize=(20, 9))
t = np.arange(-0.5, 1, 0.00001)
pylab.subplot(121)
pylab.plot(t)
pylab.subplot(122)
pylab.plot(t)
pylab.yscale('close_to_one')
pylab.grid(True)
pylab.show()
请注意,您可以通过关键字参数来控制9的数量:
Note that you can control the number of 9's via a keyword argument:
pylab.figure()
pylab.plot(t)
pylab.yscale('close_to_one', nines=3)
pylab.grid(True)
这篇关于matplotlib中累积分布函数的对数图的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!