本文介绍了brain.js正确训练神经网络的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我必须清楚地误解了

我玩这个

const brain = require('brain.js');

const network = new brain.NeuralNetwork();

network.train([
    { input: { doseA: 0 }, output: { indicatorA: 0 } },
    { input: { doseA: 0.1 }, output: { indicatorA: 0.02 } },
    { input: { doseA: 0.2 }, output: { indicatorA: 0.04 } },
    { input: { doseA: 0.3 }, output: { indicatorA: 0.06 } },
    { input: { doseA: 0.4 }, output: { indicatorA: 0.08 } },
    { input: { doseA: 0.5 }, output: { indicatorA: 0.10 } },
    { input: { doseA: 0.6 }, output: { indicatorA: 0.12 } },
    { input: { doseA: 0.7 }, output: { indicatorA: 0.14 } },
]);

const result = network.run({ doseA: 0.35 });

console.log(result);

>> { indicatorA: 0.12165333330631256 }
    => undefined

期待结果为 {indicatorA:0.07}

我做错了什么?

推荐答案

增加迭代次数并降低错误阈值对我有用:

Increasing the number of iterations and decreasing the error threshold worked for me:

const brain = require('brain.js');

const network = new brain.NeuralNetwork();

network.train([
    { input: { doseA: 0 }, output: { indicatorA: 0 } },
    { input: { doseA: 0.1 }, output: { indicatorA: 0.02 } },
    { input: { doseA: 0.2 }, output: { indicatorA: 0.04 } },
    { input: { doseA: 0.3 }, output: { indicatorA: 0.06 } },
    { input: { doseA: 0.4 }, output: { indicatorA: 0.08 } },
    { input: { doseA: 0.5 }, output: { indicatorA: 0.10 } },
    { input: { doseA: 0.6 }, output: { indicatorA: 0.12 } },
    { input: { doseA: 0.7 }, output: { indicatorA: 0.14 } },
], {
  log: true,
  iterations: 1e6,
  errorThresh: 0.00001
});

const result = network.run({ doseA: 0.35 });

console.log(result);
//

结果: {indicatorA:0.0693388432264328}

这篇关于brain.js正确训练神经网络的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

07-25 12:35