问题描述
我正在开展指纹识别项目。作为方向场估计算法的一部分,输入指纹图像应该被分成块,并且必须计算每个块中每个像素的梯度,我的问题是如何计算这些梯度。
I was working on a fingerprint recognition project. As a part of an orientation field estimation algorithm the input fingerprint image should be divided into blocks and have to compute gradients at each pixel in each block and my question is how this gradients are calculated.
推荐答案
您需要更具体关于渐变类型。 Gradient 可以表示以下之一:
You need to be more specific about the type of gradient. Gradient can mean one of:
- (纵向,横向或组合)
- 上述的近似值/替代值(例如)
- Sobel (vertical, horizontal, or combined)
- Laplacian
- Approximations/alternatives to the above (e.g. Scharr)
通过查看模糊的问题,听起来像你没有真正试图充分理解你的问题。我建议您首先查看相应的,其参考文献和任何内容。 Google上的相关点击。
From looking at your vague question, it sounds like you haven't really tried to understand your problem sufficiently. I suggest that you start by taking a look at the corresponding Wikipedia article, its references and any relevant hits on Google.
完成后,请回过头来完善您的答案 - 我相信很多人会很乐意为您提供帮助。
Once you've done that, come back and refine your answer -- I'm sure many people will be happy to help you.
这篇关于图像处理 - 计算每个像素的梯度?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!