问题描述
当试图将Keras模型导出为TensorFlow Estimator以便服务模型时遇到了以下问题.由于同样的问题也弹出了中,我将说明玩具示例中发生的情况,并提供用于文档目的的解决方法. Tensorflow 1.12.0和Keras 2.2.4会发生此行为.实际的Keras以及tf.keras
都会发生这种情况.
I encountered the following issue when trying to export a Keras model as a TensorFlow Estimator with the purpose of serving the model. Since the same problem also popped up in an answer to this question, I will illustrate what happens on a toy example and provide my workaround solution for documentation purposes. This behaviour occurs with Tensorflow 1.12.0 and Keras 2.2.4. This happens with actual Keras as well as with tf.keras
.
尝试导出使用tf.keras.estimator.model_to_estimator
从Keras模型创建的Estimator时出现问题.调用estimator.export_savedmodel
时,将抛出NotFoundError
或ValueError
.
The problem occurs when trying to export an Estimator that was created from a Keras model with tf.keras.estimator.model_to_estimator
. Upon calling estimator.export_savedmodel
, either a NotFoundError
or a ValueError
is thrown.
以下代码将其复制为一个玩具示例.
The below code reproduces this for a toy example.
创建Keras模型并保存:
Create a Keras model and save it:
import keras
model = keras.Sequential()
model.add(keras.layers.Dense(units=1,
activation='sigmoid',
input_shape=(10, )))
model.compile(loss='binary_crossentropy', optimizer='sgd')
model.save('./model.h5')
接下来,使用tf.keras.estimator.model_to_estimator
将模型转换为估算器,添加输入接收器函数,并使用estimator.export_savedmodel
将其导出为Savedmodel
格式:
Next, convert the model to an estimator with tf.keras.estimator.model_to_estimator
, add an input receiver function and export it in the Savedmodel
format with estimator.export_savedmodel
:
# Convert keras model to TF estimator
tf_files_path = './tf'
estimator =\
tf.keras.estimator.model_to_estimator(keras_model=model,
model_dir=tf_files_path)
def serving_input_receiver_fn():
return tf.estimator.export.build_raw_serving_input_receiver_fn(
{model.input_names[0]: tf.placeholder(tf.float32, shape=[None, 10])})
# Export the estimator
export_path = './export'
estimator.export_savedmodel(
export_path,
serving_input_receiver_fn=serving_input_receiver_fn())
这将抛出:
ValueError: Couldn't find trained model at ./tf.
推荐答案
我的解决方法如下.检查./tf
文件夹可以清楚地看到,对model_to_estimator
的调用将必要的文件存储在keras
子文件夹中,而export_model
希望这些文件直接位于./tf
文件夹中,因为这是我们指定的路径model_dir
参数:
My workaround solution is as follows. Inspecting the ./tf
folder makes clear that the call to model_to_estimator
stored the necessary files in a keras
subfolder, while export_model
expects those files to be in the ./tf
folder directly, as this is the path we specified for the model_dir
argument:
$ tree ./tf
./tf
└── keras
├── checkpoint
├── keras_model.ckpt.data-00000-of-00001
├── keras_model.ckpt.index
└── keras_model.ckpt.meta
1 directory, 4 files
简单的解决方法是将这些文件上移一个文件夹.这可以通过Python完成:
The simple workaround is to move these files up one folder. This can be done with Python:
import os
import shutil
from pathlib import Path
def up_one_dir(path):
"""Move all files in path up one folder, and delete the empty folder
"""
parent_dir = str(Path(path).parents[0])
for f in os.listdir(path):
shutil.move(os.path.join(path, f), parent_dir)
shutil.rmtree(path)
up_one_dir('./tf/keras')
这将使model_dir
目录看起来像这样:
Which will make the model_dir
directory look like this:
$ tree ./tf
./tf
├── checkpoint
├── keras_model.ckpt.data-00000-of-00001
├── keras_model.ckpt.index
└── keras_model.ckpt.meta
0 directories, 4 files
在model_to_estimator
和export_savedmodel
调用之间进行此操作可以根据需要导出模型:
Doing this manipulation in between the model_to_estimator
and the export_savedmodel
calls allows to export the model as desired:
export_path = './export'
estimator.export_savedmodel(
export_path,
serving_input_receiver_fn=serving_input_receiver_fn())
这篇关于将Keras模型导出为TF估计器:找不到经过训练的模型的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!