Keras与Caffe的卷积有什么区别

Keras与Caffe的卷积有什么区别

本文介绍了Keras与Caffe的卷积有什么区别?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在尝试将大型Caffe网络复制到Keras(基于tensorflow后端)。但是即使在单个卷积层上,我也遇到了很大的麻烦。

I'm trying to replicate a large Caffe network into Keras (based on tensorflow backend). But I'm having a large trouble doing it even at a single convolutional layer.

简单卷积一般

假设我们有一个形状为(1,500,500,3)的4D输入,并且我们必须对此输入带有 96 过滤器,内核大小为 11 4x4 大步前进。

Let's say we had a 4D input with shape (1, 500, 500, 3), and we had to perform a single convolution on this input with 96 filters with kernel size of 11 and 4x4 strides.

让我们设置权重和输入变量:

Let's set our weight and input variables:

w = np.random.rand(11, 11, 3, 96)  # weights 1
b = np.random.rand(96)  # weights 2 (bias)

x = np.random.rand(500, 500, 3)

在Keras中进行简单卷积

在Keras中可以这样定义:

This is how it could be defined in Keras:

from keras.layers import Input
from keras.layers import Conv2D
import numpy as np

inp = Input(shape=(500, 500, 3))
conv1 = Conv2D(filters=96, kernel_size=11, strides=(4, 4), activation=keras.activations.relu, padding='valid')(inp)


model = keras.Model(inputs=[inp], outputs=conv1)
model.layers[1].set_weights([w, b])  # set weights for convolutional layer


predicted = model.predict([x.reshape(1, 500, 500, 3)])
print(predicted.reshape(1, 96, 123, 123))  # reshape keras output in the form of Caffe

Caffe中简单卷积的形式

simple.prototxt

name: "simple"
input: "inp"
input_shape {
  dim: 1
  dim: 3
  dim: 500
  dim: 500
}
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "inp"
  top: "conv1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    kernel_size: 11
    pad: 0
    stride: 4
  }
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "conv1"
  top: "conv1"
}

Python中的Caffe:

Caffe in Python:

import caffe

net = caffe.Net('simple.prototxt', caffe.TEST)
net.params['conv1'][0].data[...] = w.reshape(96, 3, 11, 11)  # set weights 1
net.params['conv1'][1].data[...] = b  # set weights 2 (bias)
net.blobs['inp'].reshape(1, 3, 500, 500) # reshape input layer to fit our input array x
print(net.forward(inp=x.reshape(1, 3, 500, 500)).get('conv1'))

问题

如果我们同时执行了代码片段,我们将注意到输出彼此不同。我知道Caffe的对称填充等差异很小,但是我什至没有在这里使用填充。但是Caffe的输出不同于Keras的输出...

If we executed both of the snippets of code, we would notice that outputs are different from each other. I understand that there are few differences such as symmetric padding of Caffe, but I didn't even use padding here. Yet the output of Caffe is different from output of Keras...

为什么会这样?我知道Theano后端不像Caffe那样利用相关性,因此它需要将内核旋转180度,但是对于tensorflow是否相同?据我所知,Tensorflow和Caffe都使用互相关而不是卷积。

Why is this so? I know that Theano backend doesn't utilize correlation like Caffe does and hence it requires kernel to be rotated by 180 degrees, but is it the same for tensorflow? from what I know, both Tensorflow and Caffe use cross-correlation instead of Convolution.

我如何在Keras和Caffe中制作两个使用卷积的相同模型?

How could I make two identical models in Keras and Caffe that use convolution?

任何帮助将不胜感激!

推荐答案

我发现了问题,但是我不确定如何解决这个问题。

I found the problem, but I'm not sure how to fix it yet...

这两个卷积层之间的区别在于它们的项对齐。仅当过滤器的数量等于 N 使得 N>时,才会出现此 alignment 问题。 1&& & S 其中, S 是过滤器的尺寸。换句话说,仅当我们从卷积中得到行数和列数均大于1 的多维数组时,才会发生这种问题。

The difference between these two convolutional layers is alignment of their items. This alignment problem only occurs when number of filters are equal to N such that N > 1 && N > S where S is dimension of filter. In other words, such problem only occurs when we get a multi-dimensional array from convolution which has both number of rows and number of columns greater than 1.

为了解这一点,我简化了输入和输出数据,以便我们可以更好地分析

To see this, I simplified my input and output data so that we can better analyze the mechanics of both layers.

simple.prototxt

input: "input"
input_shape {
  dim: 1
  dim: 1
  dim: 2
  dim: 2
}
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "input"
  top: "conv1"
  convolution_param {
    num_output: 2
    kernel_size: 1
    pad: 0
    stride: 1
  }
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "conv1"
  top: "conv1"
}

simple.py

import keras
import caffe
import numpy as np
from keras.layers import Input, Conv2D
from keras.activations import relu
from keras import Model

filters = 2  # greater than 1 and ker_size
ker_size = 1

_input = np.arange(2 * 2).reshape(2, 2)
_weights = [np.reshape([[2 for _ in range(filters)] for _ in range(ker_size*ker_size)], (ker_size, ker_size, 1, filters)), np.reshape([0 for _ in range(filters)], (filters,))]  # weights for Keras, main weight is array of 2`s while bias weight is array of 0's
_weights_caffe = [_weights[0].T, _weights[1].T]  # just transpose them for Caffe

# Keras Setup

keras_input = Input(shape=(2, 2, 1), dtype='float32')
keras_conv = Conv2D(filters=filters, kernel_size=ker_size, strides=(1, 1), activation=relu, padding='valid')(keras_input)
model = Model(inputs=[keras_input], outputs=keras_conv)
model.layers[1].set_weights([_weights[0], _weights[1]])

# Caffe Setup

net = caffe.Net("simpler.prototxt", caffe.TEST)
net.params['conv1'][0].data[...] = _weights_caffe[0]
net.params['conv1'][1].data[...] = _weights_caffe[1]
net.blobs['input'].data[...] = _input.reshape(1, 1, 2, 2)


# Predictions


print("Input:\n---")
print(_input)
print(_input.shape)
print("\n")

print("Caffe:\n---")
print(net.forward()['conv1'])
print(net.forward()['conv1'].shape)
print("\n")

print("Keras:\n---")
print(model.predict([_input.reshape(1, 2, 2, 1)]))
print(model.predict([_input.reshape(1, 2, 2, 1)]).shape)
print("\n")

输出

Input:
---
[[0 1]
 [2 3]]
(2, 2)


Caffe:
---
[[[[0. 2.]
   [4. 6.]]

  [[0. 2.]
   [4. 6.]]]]
(1, 2, 2, 2)


Keras:
---
[[[[0. 0.]
   [2. 2.]]

  [[4. 4.]
   [6. 6.]]]]
(1, 2, 2, 2)

分析

如果您查看Caffe模型的输出,您会注意到我们的 2x2 数组加倍(这样我们就有2个 2x2 数组),然后使用权重矩阵对这两个数组中的每一个执行矩阵乘法。像这样的东西:

If you look at output by the Caffe model, you'll notice that our 2x2 array is first doubled (so that we have an array of 2 2x2 arrays) and then matrix multiplication is performed on each of those two arrays with our weight matrix. Something like this:

原始

[[[[0. 2.]
   [4. 6.]]

  [[0. 2.]
   [4. 6.]]]]

已转换

[[[[(0 * 2) (2 * 2)]
   [(4 * 2) (6 * 2)]]

  [[(0 * 2) (2 * 2)]
   [(4 * 2) (6 * 2)]]]]

Tensorflow有所不同,它似乎在与Caffe进行相同的操作后首先按升序对齐输出的2D向量做到了。这似乎是一种怪异的行为,我无法理解他们为什么要这样做。

Tensorflow does something different, it seems to first align 2D vectors of output in ascending order after doing the same thing as Caffe did. This seems like a weird behavior, and I'm unable to understand why would they do such thing.

我已经回答了有关问题的原因的自己的问题,但是我还没有任何干净的解决方案。我仍然没有找到令人满意的答案,因此我将接受具有实际解决方案的问题。

I have answered my own question about the cause of the problem, but I'm not aware of any clean solution yet. I still don't find my answer satisfying enough hence I'm going to accept the question which has the actual solution.

我唯一知道的解决方案是创建自定义层,这对我来说不是一个很整洁的解决方案。

The only solution I know is creation of custom layer, which is not a very neat solution to me.

这篇关于Keras与Caffe的卷积有什么区别?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

07-25 11:54