本文介绍了如何在keras中单独使用自动编码器的编码器?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我已经训练了以下自动编码器模型:
I have trained the following autoencoder model:
input_img = Input(shape=(1, 32, 32))
x = Convolution2D(16, 3, 3, activation='relu', border_mode='same')(input_img)
x = MaxPooling2D((2, 2), border_mode='same')(x)
x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(x)
x = MaxPooling2D((2, 2), border_mode='same')(x)
x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(x)
encoded = MaxPooling2D((2, 2), border_mode='same')(x)
x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(encoded)
x = UpSampling2D((2, 2))(x)
x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(x)
x = UpSampling2D((2, 2))(x)
x = Convolution2D(16, 3, 3, activation='relu',border_mode='same')(x)
x = UpSampling2D((2, 2))(x)
decoded = Convolution2D(1, 3, 3, activation='sigmoid', border_mode='same')(x)
autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='RMSprop', loss='binary_crossentropy')
autoencoder.fit(X_train, X_train,
nb_epoch=1,
batch_size=128,
shuffle=True,
validation_data=(X_test, X_test)]
)
训练完此自动编码器后,我想将训练有素的编码器用于受监视的线路.如何仅提取此自动编码器模型中训练有素的编码器部分?
After training this autoencoder i want to use the trained encoder for a supervised line. How can i extract only the trained encoder part of this autoencoder model ?
推荐答案
您可以在训练后仅使用编码器的情况下创建模型:
You can just create a model after training that only uses the encoder:
autoencoder = Model(input_img, encoded)
如果要在编码部分之后添加其他层,也可以执行以下操作:
If you want to add further layers after the encoded portion, you can do that as well:
classifier = Dense(nb_classes, activation='softmax')(encoded)
model = Model(input_img, classifier)
这篇关于如何在keras中单独使用自动编码器的编码器?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!