本文介绍了最佳房间数目和大小N重叠会议日程的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我碰到这个问题,我不知道如果我的解决方案是最佳的。

问题

指定N加权(无线),可能重叠的时间间隔(重新presenting会议日程),找到最小数和放大器;会议进行的所有会议室所需的能力。

示例

有关上述安排,我们将需要10两间会议室和10 capacitities。 (对吗?)

我的解决方案

取一套房间,并遍历区间从左边,如果我们有一间会议室可提供容量大于所需使用它,如果没有符合标准,使一个新的房间或增加现有配备了新的能力。

例如:

开始的10 - {10}

开始8 - {10,8}

10结束 - {10 - 免费的,8}

开始6 - {10,8}

8结束 - {10,8,免费}

开始10 = {10,8 + = 2}或{10,10}

等等.....

这基本上是贪婪的。

  • 有人能证明这一点非最佳?
  • 请告诉我的解决方案,如果这是不是最佳? DP?
解决方案

直觉

我会试试看。天真的方法是枚举所有可能的解决方案,并挑选最好的一个。考虑到这一点,找到 K 室,可容纳 N 会议,就相当于找到一个氏/ code>往来港澳的 N 点分区。对 5 会议一个 2 往来港澳分区的一个例子是 [0,2,4 ] [1,3] 在OP例如:

  | --- 0 ------ | | --------- --------- 4 |

   | ------ 1 ----- | | ---------- ----------- 3 |

             | -------- ------- 2 |
 

所以,基本的想法是枚举所有 k的 N 会议 -way分区,约束两个会议重叠不能属于同一个集群。例如, [0,1,2] [3,4] 并不是因为会议的有效分区 [0,1,2] 不能发生在室内;同样适用于会议 [3,4] 。幸运的是,约束是很容易使用递归的方法时实施。

算法

使用的Python ,它看起来是这样的:

高清粿(A,K,重叠):        A =会议ID列表,房间的K =数,    重叠[会议ID M] =集会议与间重叠        如果k == 1:#只有1室:所有会议去那里        屈服[A [:]    ELIF满足K == LEN(A):#N室和n会议:把每间客房1间会议        产生[A]为一间于A]    其他 :        对于分区粿(A [1:],K重叠):#添加新的会议,将一个现有房间            对于我,CI在历数(分区):                相适应=所有(A [0]不重叠[X]对于x在CI)#2避免重叠在同一个房间会议                RES =分区[我] + [CI + A [0]]] +分区[I + 1:]                如果相适应:                    产量水库        对于分区粿(A [1:],K-1,重叠):#添加新的会议,一个新的房间            的isValid =(一组(A [1:])及set.union(*(重叠[A]为在A [1:]))==集())#2避免重叠在同一个房间会议            如果(k-1个→1)或(K-1 == 1和的isValid):                产量分区+ [A [0]]]

这看起来有点复杂,但是当你意识到这只是递归算法 K 办法分区+ 2个额外的线路,以保证我们只考虑它其实很简单有效的分区。

OP例如解

好了,现在让我们prepare使用OP例如输入数据:

导入收藏N = 5K = 2#A =范围(N)字典#prepare重叠对= [(0,1),(1,2),(2,3),(3,4)]#会议重叠大小=字典(((0,10),(1,8),(2,6),(3,10),(4,8)))重叠= collections.defaultdict(套)对(I,J)中对:    重叠[I]。新增(J)    重叠[J]。新增(I)defaultdict(小于类型设定>中的{0:设置为([1]),1:集([0,2]),2:集([1,3]),3:组([2,1 4]),4:组([3])}){0:10,1:8,2:6,3:10,4:8}

现在我们只是遍历有效 2 往来港澳分区和打印房间的大小。世界上只有一个有效的分区,所以这是我们的解决方案:

在粿(A,K,重叠)分区:    打印分区,[最大(大小[X]对于x在三)对C的分区][[3,1],[4,2,0]] [10,10]

确定这样的会议 1,3 去,房间面积 10 ,和会议 0,2,4 走在一个房间大小的 10

一个稍微复杂的例子

但是,只有一个有效的 2 -way分区,当然,这也是最佳的解决方案。如何无聊!让我们添加一个新的会议 5 和一个新房间的任择议定书的例子,使之更加有趣:

  | --- 0 ------ | | --- 5 --- | | --------- --------- 4 |

   | ------ 1 ----- | | ---------- ----------- 3 |

             | -------- ------- 2 |
 

输入相应的数据:

N = 6k = 3的#A =范围(N)对= [(0,1),(1,2),(2,3),(3,4),(5,2),(5,3)]#会议重叠大小=字典(((0,10),(1,8),(2,6),(3,10),(4,8),(5,2)))重叠= collections.defaultdict(套)对(I,J)中对:    重叠[I]。新增(J)    重叠[J]。新增(I)defaultdict(小于类型设定>中的{0:组([1]),1:集([0,2]),2:集([1,3,5]),3:组([ 2,4,5]),4:组([3]),5:组([2,3])}){0:10,1:8,2:6,3:10,4:8,5:2}

和结果:

在粿(A,K,重叠)分区:    打印分区,[最大(大小[X]对于x在三)对C的分区][[3,1],[4,2,0],[5] [10,10,2][[3,1],[4,2],[5,0] [10,8,10][[3,0],[4,2],[5,1] [10,8,8][3],[4,2,0],[5,1]] [10,10,8][[4,5,1],[3,0],[2] [8,10,6][[4,5,1],[3],[2,0]] [8,10,10][[4,5,0],[3,1],[2] [10,10,6][[4,5],[3,1],[2,0]] [8,10,10]

最佳 3 往来港澳分区 [3,1],[4,2,0],[5]] 和最佳的房间大小 [10,10,2] 。您也可以在所有客房的最小大小直接:

分(S​​UM([MAX(大小[X]对于x在C)对于C在分区])的分区粿(A,K,重叠))22

I bumped into this question and I am not sure if my solution is optimal.

Problem

Given N weighted (Wi) and possibly overlapping intervals (representing meeting schedules) , find the minimum number "&" capacity of meeting rooms needed to conduct all meetings.

Example

For the above schedule, we would need two meeting rooms of 10 and 10 capacitities. ( am i correct ? )

My Solution

Take a set of rooms, and traverse the intervals from the left, if we have a meeting room available with a capacity greater than needed use it, if there is none that meets the criteria, make a new room or increment the existing rooms with the new capacity.

Example:

Start of 10 - { 10 }

Start of 8 - { 10, 8 }

End of 10 - { 10-free, 8 }

Start of 6 - { 10, 8 }

End of 8 - {10, 8-free }

Start of 10 = { 10, 8+=2 } OR {10, 10 }

and so on.....

this is essentially greedy..

  • Can someone prove this non-optimal?
  • Whats the solution if this is non-optimal? DP ?

解决方案

Intuition

I will give it a try. The naive approach is to enumerate all possible solutions and pick the best one. With this in mind, finding k rooms which can accommodate n meetings is equivalent to finding a k-way partition of n points. An example of a 2-way partition of 5 meetings is [ 0,2,4 ] and [ 1,3 ] in the OP example:

|---0------|                     |---------4---------|

   |------1-----|          |----------3-----------|

             |--------2-------|

So the basic idea is to enumerate all k-way partitions of n meetings, with the constraint that two overlapping meetings cannot belong to the same cluster. For example, [ 0,1,2 ] and [ 3,4 ] is not a valid partition because meetings [ 0,1,2 ] cannot take place in the room; same goes for meetings [ 3,4 ]. Fortunately, the constraint is easy to implement when using a recursive approach.

Algorithm

With Python, it looks like this:

def kWay( A, k, overlap ) :
    """
    A = list of meeting IDs, k = number of rooms,
    overlap[ meeting ID m ] = set of meetings overlapping with m
    """
    if k == 1 : # only 1 room: all meetings go there
        yield [ A[:] ]
    elif k == len(A) : # n rooms and n meetings: put 1 meeting per room
        yield [ [a] for a in A ]
    else :
        for partition in kWay( A[1:], k, overlap ) : # add new meeting to one existing room
            for i, ci in enumerate( partition ) :
                isCompatible = all( A[0] not in overlap[x] for x in ci ) # avoid 2 overlapping meetings in the same room
                res = partition[:i] + [ ci + [ A[0] ] ] + partition[ i+1: ]
                if isCompatible :
                    yield res
        for partition in kWay( A[1:], k-1, overlap ) : # add new meeting to a new room
            isValid = ( set(A[1:]) & set.union( * ( overlap[a] for a in A[ 1: ] ) ) == set() ) # avoid 2 overlapping meetings in the same room
            if (k-1>1) or ( k-1==1 and isValid ) :
                yield partition + [ [ A[0] ] ]

This looks a bit complicated but it's actually quite simple when you realize that it is simply the recursive algorithm for kway partitioning + 2 extra lines to guarantee that we only consider valid partitions.

Solution of OP example

Ok now let's prepare the input data using the OP example:

import collections

n = 5
k = 2
#
A = range(n)
# prepare overlap dictionary
pairs = [ (0,1), (1,2), (2,3), (3,4) ] # overlapping meetings
size = dict( ( (0,10), (1,8), (2,6) , (3,10), (4,8) ) )

overlap = collections.defaultdict(set)
for (i,j) in pairs :
    overlap[i].add(j)
    overlap[j].add(i)

defaultdict(<type 'set'>, {0: set([1]), 1: set([0, 2]), 2: set([1, 3]), 3: set([2, 4]), 4: set([3])})
{0: 10, 1: 8, 2: 6, 3: 10, 4: 8}

Now we just iterate over the valid 2-way partitions and print the room sizes. There is only one valid partition, so this our solution:

for partition in kWay( A, k, overlap ) :
    print partition, [ max( size[x] for x in c ) for c in partition ]
[[3, 1], [4, 2, 0]] [10, 10]

Ok so meetings 1,3 go a room of size 10, and meetings 0,2,4 go in a room of size 10.

A slightly more complicated example

But there was only one valid 2-way partition, so of course this was also the optimal solution. How boring! Let's add a new meeting 5 and a new room to the OP example to make it more interesting :

|---0------|            |---5---|        |---------4---------|

   |------1-----|          |----------3-----------|

             |--------2-------|

Corresponding input data:

n = 6
k = 3
#
A = range(n)
pairs = [ (0,1), (1,2), (2,3), (3,4), (5,2), (5,3) ] # overlapping meetings
size = dict( ( (0,10), (1,8), (2,6) , (3,10), (4,8), (5,2) ) )

overlap = collections.defaultdict(set)
for (i,j) in pairs :
    overlap[i].add(j)
    overlap[j].add(i)

defaultdict(<type 'set'>, {0: set([1]), 1: set([0, 2]), 2: set([1, 3, 5]), 3: set([2, 4, 5]), 4: set([3]), 5: set([2, 3])})
{0: 10, 1: 8, 2: 6, 3: 10, 4: 8, 5: 2}

And the result:

for partition in kWay( A, k, overlap ) :
    print partition, [ max( size[x] for x in c ) for c in partition ]
[[3, 1], [4, 2, 0], [5]] [10, 10, 2]
[[3, 1], [4, 2], [5, 0]] [10, 8, 10]
[[3, 0], [4, 2], [5, 1]] [10, 8, 8]
[[3], [4, 2, 0], [5, 1]] [10, 10, 8]
[[4, 5, 1], [3, 0], [2]] [8, 10, 6]
[[4, 5, 1], [3], [2, 0]] [8, 10, 10]
[[4, 5, 0], [3, 1], [2]] [10, 10, 6]
[[4, 5], [3, 1], [2, 0]] [8, 10, 10]

The optimal 3-way partition is [[3, 1], [4, 2, 0], [5]] and the optimal room sizes are [10, 10, 2]. You can also get the minimum size of all rooms directly:

min( sum( [ max( size[x] for x in c ) for c in partition ] ) for partition in kWay( A, k, overlap ) )

22

这篇关于最佳房间数目和大小N重叠会议日程的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-02 20:10