本文介绍了通过二维数组numpy的使用ctypes的ç的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
什么是传递一个numpy的2D正确的方式 - 阵列使用ctypes的C函数?
我目前的做法至今(导致段错误):
C code:
无效测试(双** in_array,INT N){
INT I,J;
对于(i = 0; I< N;我++){
为(J = 0; J< N; J ++){
的printf(%E \\ t的,in_array [I] [J]);
}
的printf(\\ n);
}
}
蟒蛇code:
从ctypes的导入*
进口numpy.ctypeslib作为npctarray_2d_double = npct.ndpointer(DTYPE = np.double,NDIM = 2,旗帜='毗连')
liblr = npct.load_library('libtest.so','./src')liblr.test.restype =无
liblr.test.argtypes = [array_2d_double,c_int的]X = np.arange(100).reshape((10,10))。astype(np.double)
liblr.test(X,10)
解决方案
这可能是一个迟到的答案,但我终于得到了它的工作。一切归功于Sturla莫尔登在此链接。
最关键的是,请注意,双**
是类型的数组 np.uintp
。因此,我们有
XPP =(x.ctypes.data + np.arange(x.shape [0])* x.strides [0])。astype(np.uintp)
doublepp = np.ctypeslib.ndpointer(DTYPE = np.uintp)
然后用 doublepp
作为类型,通 XPP
。请参见全code连接。
在C code:
// dummy.c
#包括LT&;&stdlib.h中GT;__declspec(dllexport)的无效foobar的(const int的男,const int的N,常量
双** X,双** Y)
{
为size_t I,J;
对于(i = 0; I<米;我++)
为(J = 0; J< N; J ++)
Y [I] [J] = X [I] [J]。
}
Python的code:
#test.py
导入numpy的是NP
从numpy.ctypeslib进口ndpointer
进口ctypes的_doublepp = ndpointer(DTYPE = np.uintp,NDIM = 1,旗帜='C')_DLL = ctypes.CDLL('dummy.dll')_foobar = _dll.foobar
_foobar.argtypes = [ctypes.c_int,ctypes.c_int,_doublepp,_doublepp]
_foobar.restype =无高清foobar的(X):
Y = np.zeros_like(X)
XPP =(X .__ array_interface __ ['数据'] [0]
+ np.arange(x.shape [0])* x.strides [0])。astype(np.uintp)
YPP =(Y .__ array_interface __ ['数据'] [0]
+ np.arange(y.shape [0])* y.strides [0])。astype(np.uintp)
M = ctypes.c_int(x.shape [0])
N = ctypes.c_int(x.shape [1])
_foobar(M,N,XPP,YPP)
返回是如果__name__ =='__main__':
X = np.arange(9)。重塑((3,3))
Y = foobar的(X)
希望它帮助,
肖恩
What is the correct way to pass a numpy 2d - array to a c function using ctypes ?My current approach so far (leads to a segfault):
c code :
void test(double **in_array, int N){
int i,j;
for(i = 0; i<N; i++){
for(j = 0; j<N; j++){
printf("%e \t", in_array[i][j]);
}
printf("\n");
}
}
python code:
from ctypes import *
import numpy.ctypeslib as npct
array_2d_double = npct.ndpointer(dtype=np.double,ndim=2, flags='CONTIGUOUS')
liblr = npct.load_library('libtest.so', './src')
liblr.test.restype = None
liblr.test.argtypes = [array_2d_double, c_int]
x = np.arange(100).reshape((10,10)).astype(np.double)
liblr.test(x, 10)
解决方案
This is probably a late answer, but I finally got it working. All credit goes to Sturla Molden at this link.
The key is, note that double**
is an array of type np.uintp
. Therefore, we have
xpp = (x.ctypes.data + np.arange(x.shape[0]) * x.strides[0]).astype(np.uintp)
doublepp = np.ctypeslib.ndpointer(dtype=np.uintp)
And then use doublepp
as the type, pass xpp
in. See full code attached.
The C code:
// dummy.c
#include <stdlib.h>
__declspec(dllexport) void foobar(const int m, const int n, const
double **x, double **y)
{
size_t i, j;
for(i=0; i<m; i++)
for(j=0; j<n; j++)
y[i][j] = x[i][j];
}
The Python code:
# test.py
import numpy as np
from numpy.ctypeslib import ndpointer
import ctypes
_doublepp = ndpointer(dtype=np.uintp, ndim=1, flags='C')
_dll = ctypes.CDLL('dummy.dll')
_foobar = _dll.foobar
_foobar.argtypes = [ctypes.c_int, ctypes.c_int, _doublepp, _doublepp]
_foobar.restype = None
def foobar(x):
y = np.zeros_like(x)
xpp = (x.__array_interface__['data'][0]
+ np.arange(x.shape[0])*x.strides[0]).astype(np.uintp)
ypp = (y.__array_interface__['data'][0]
+ np.arange(y.shape[0])*y.strides[0]).astype(np.uintp)
m = ctypes.c_int(x.shape[0])
n = ctypes.c_int(x.shape[1])
_foobar(m, n, xpp, ypp)
return y
if __name__ == '__main__':
x = np.arange(9.).reshape((3, 3))
y = foobar(x)
Hope it helps,
Shawn
这篇关于通过二维数组numpy的使用ctypes的ç的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!