问题描述
我有一个要矢量化的函数.在函数内部,我有以下代码.
I have a function which I am trying to vectorize. Inside the function I have the following code.
A = np.c_[xdata, ydata, np.ones(len(zdata))]
其中 x_data、y_data、z_data 都是 1x5 数组,例如.[1,2,3,4,5].A 的结果输出为
Where x_data, y_data, z_data are all 1x5 array, eg. [1,2,3,4,5]. The resulting output for A would be
array([[1.90155189, 1.64412979, 1. ],
[2.44148892, 1.73851717, 1. ],
[1.65259189, 2.10693759, 1. ],
[2.52045732, 2.30939049, 1. ],
[1.53516213, 2.39788003, 1. ]])
我想将函数的这一部分转换为处理 x、y、z 的输入数组(例如 5 列的 1000 行).我天真地试图将数组输入到这个函数中,第一行的输出如下.
I would like to convert this part of the function to work on an array of inputs (eg. 1000 rows of 5 columns) for x, y, z. I naively tried to just feed the arrays into this function with the following output for the first row.
array([1.90155189, 2.44148892, 1.65259189, 2.52045732, 1.53516213,
1.64412979, 1.73851717, 2.10693759, 2.30939049, 2.39788003,
1. ])
这是第一个结果的输入示例:
Here is an example for the inputs for the first result:
x=[1.90155189 2.44148892 1.65259189 2.52045732 1.53516213]
y=[1.64412979 1.73851717 2.10693759 2.30939049 2.39788003]
z=[0.23273446 0.57301046 0.89755946 0.07169598 0.41394575]
假设现在我有第二种方法的以下数据:
Let's say now I have the following data for the second method:
x_array = [[1.90155189 2.44148892 1.65259189 2.52045732 1.53516213],
[1.90155189 2.44148892 1.65259189 2.52045732 1.53516213],
[1.90155189 2.44148892 1.65259189 2.52045732 1.53516213]]
y_array = [[1.64412979 1.73851717 2.10693759 2.30939049 2.39788003],
[1.64412979 1.73851717 2.10693759 2.30939049 2.39788003],
[1.64412979 1.73851717 2.10693759 2.30939049 2.39788003]]
z_array = [[0.23273446 0.57301046 0.89755946 0.07169598 0.41394575],
[0.23273446 0.57301046 0.89755946 0.07169598 0.41394575],
[0.23273446 0.57301046 0.89755946 0.07169598 0.41394575]]
预期输出为
[[[1.90155189, 1.64412979, 1. ],
[2.44148892, 1.73851717, 1. ],
[1.65259189, 2.10693759, 1. ],
[2.52045732, 2.30939049, 1. ],
[1.53516213, 2.39788003, 1. ]],
[[1.90155189, 1.64412979, 1. ],
[2.44148892, 1.73851717, 1. ],
[1.65259189, 2.10693759, 1. ],
[2.52045732, 2.30939049, 1. ],
[1.53516213, 2.39788003, 1. ]],
[[1.90155189, 1.64412979, 1. ],
[2.44148892, 1.73851717, 1. ],
[1.65259189, 2.10693759, 1. ],
[2.52045732, 2.30939049, 1. ],
[1.53516213, 2.39788003, 1. ]]]
推荐答案
你可以使用这个:
# new_A = np.stack((x,y,np.ones_like(z)), axis=1).swapaxes(1,2)
new_A = np.stack((x,y,np.ones_like(z)), axis=2)
测试:
THOUSAND = 6
x = np.random.randint(1,5,size=(THOUSAND,5))
y = np.random.randint(1,5,size=(THOUSAND,5))
z = np.random.randint(1,5,size=(THOUSAND,5))
print (x)
print (y)
print (z)
new_A = np.stack((x,y,np.ones_like(z)), axis=1).swapaxes(1,2)
print (new_A)
输出:
[[1 2 2 1 1] # print(x)
[4 4 4 4 4]
[1 2 1 3 3]
[2 3 1 4 4]
[1 1 4 1 4]
[4 1 3 3 2]]
[[2 2 3 4 4] # print(y)
[1 1 4 2 1]
[3 3 1 1 2]
[1 1 2 1 3]
[3 2 1 4 3]
[4 4 1 3 2]]
[[3 4 3 2 2] # print(z)
[4 2 4 3 3]
[3 3 4 1 4]
[4 3 3 3 1]
[4 1 1 3 3]
[4 1 4 3 3]]
# new_A output
[[[1 2 1] # print(new_A)
[2 2 1]
[2 3 1]
[1 4 1]
[1 4 1]]
[[4 1 1]
[4 1 1]
[4 4 1]
[4 2 1]
[4 1 1]]
[[1 3 1]
[2 3 1]
[1 1 1]
[3 1 1]
[3 2 1]]
[[2 1 1]
[3 1 1]
[1 2 1]
[4 1 1]
[4 3 1]]
[[1 3 1]
[1 2 1]
[4 1 1]
[1 4 1]
[4 3 1]]
[[4 4 1]
[1 4 1]
[3 1 1]
[3 3 1]
[2 2 1]]]
这篇关于如何为数组正确使用 numpy.c_的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!