本文介绍了如何减少Ipython并行内存的使用的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

限时删除!!

我在循环多次的优化算法中使用Ipython并行.并行性是使用LoadBalancedViewmap方法(两次),DirectView的字典接口和%px魔术的调用在循环中调用的.我正在Ipython笔记本中运行该算法.

I'm using Ipython parallel in an optimisation algorithm that loops a large number of times. Parallelism is invoked in the loop using the map method of a LoadBalancedView (twice), a DirectView's dictionary interface and an invocation of a %px magic. I'm running the algorithm in an Ipython notebook.

我发现运行该算法的内核和一个控制器所消耗的内存随时间稳定增长,从而限制了我可以执行的循环数(由于可用内存有限).

I find that the memory consumed by both the kernel running the algorithm and one of the controllers increases steadily over time, limiting the number of loops I can execute (since available memory is limited).

使用heapy,在运行了约38 000次循环后,我对内存使用情况进行了分析:

Using heapy, I profiled memory use after a run of about 38 thousand loops:

Partition of a set of 98385344 objects. Total size = 18016840352 bytes.
 Index  Count     %       Size   %  Cumulative   % Kind (class / dict of class)
     0  5059553   5 9269101096  51  9269101096  51 IPython.parallel.client.client.Metadata
     1 19795077  20 2915510312  16 12184611408  68 list
     2 24030949  24 1641114880   9 13825726288  77 str
     3  5062764   5 1424092704   8 15249818992  85 dict (no owner)
     4 20238219  21  971434512   5 16221253504  90 datetime.datetime
     5   401177   0  426782056   2 16648035560  92 scipy.optimize.optimize.OptimizeResult
     6        3   0  402654816   2 17050690376  95 collections.defaultdict
     7  4359721   4  323814160   2 17374504536  96 tuple
     8  8166865   8  196004760   1 17570509296  98 numpy.float64
     9  5488027   6  131712648   1 17702221944  98 int
<1582 more rows. Type e.g. '_.more' to view.>

您可以看到IPython.parallel.client.client.Metadata实例使用了大约一半的内存. 401177 OptimizeResult实例是缓存map调用结果的一个很好的指示,它与通过lbview.map进行的优化调用的数量相同-我没有将它们缓存在我的代码中.

You can see that about half the memory is used by IPython.parallel.client.client.Metadata instances. A good indicator that results from the map invocations are being cached is the 401177 OptimizeResult instances, the same number as the number of optimize invocations via lbview.map - I am not caching them in my code.

有没有一种方法可以控制内核和Ipython并行控制器(谁的内存消耗与内核相当)的内存使用情况?

Is there a way I can control this memory usage on both the kernel and the Ipython parallel controller (who'se memory consumption is comparable to the kernel)?

推荐答案

Ipython并行客户端和控制器存储过去的结果以及过去事务中的其他元数据.

Ipython parallel clients and controllers store past results and other metadata from past transactions.

IPython.parallel.Client类提供了一种清除此数据的方法:

The IPython.parallel.Client class provides a method for clearing this data:

Client.purge_everything()

此处记录.还有purge_results()purge_local_results()方法可以使您对清除的内容有所控制.

documented here. There is also purge_results() and purge_local_results() methods that give you some control over what gets purged.

这篇关于如何减少Ipython并行内存的使用的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

1403页,肝出来的..

09-06 10:53