如何在张量流中存储和重建权重字典

如何在张量流中存储和重建权重字典

本文介绍了如何在张量流中存储和重建权重字典的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

训练时,我将权重存储在张量流变量字典中。我将该权重字典与一些数据一起传递给模型功能,以得到所需的输出。

训练后,我想将该字典存储在文件中,以便重新创建它。这样,我可以通过简单地将权重字典与新数据一起传递到同一模型函数来应用学习到的权重。
根据,只需将权重字典传递给保护程序,即可将这些权重保存为正确的名称。然后,我应该能够在应用程序函数中创建相同的字典,然后恢复保存的值。但是,如果执行此操作,则会收到未初始化值错误。有人可以帮我找到我在做什么吗?

When training I store my weights in a dictionary of tensorflow-variables. I pass that dictionary of weights to a 'model'-function together with some data to get my desired output.
After training, I would like to store that dictionary in a file in such a way that I can recreate it. That way I can apply the learned weights by simply passing the dictionary of weights together with the new data to the same model function.
According to the documentation, simply passing the dictionary of weights to a saver should save those weights under the correct names. Then I should be able to create the same dictionary in the application function and then restore the saved values. However if I do this, I get an 'values are uninitialized'-error. Can anyone help me find what I am doing wrong?

最小的自包含代码示例和相应的错误:

Minimal self-contained code example and corresponding error:

import tensorflow as tf
import numpy as np

# first train a linear model on random vectors of length 5 and store the trained parameters.
# Then load those parameters and try to apply them to a new vector.
def run():
    train_model()
    apply_model()

def train_model():
    # create random training data: 100 vectors of length 5 for both input and output.
    train_data  = np.random.random((100,5))
    train_labels = np.random.random((100,5))

    train_data_node = tf.placeholder(tf.float32, shape=(5), name="train_data_node")
    train_labels_node = tf.placeholder(tf.float32, shape=(5), name="train_labels_node")

    weights = defineWeights()

    prediction = model(train_data_node, weights)
    loss = tf.norm(prediction - train_labels_node)
    train_op = tf.train.AdagradOptimizer(learning_rate=1).minimize(loss)

    saver = tf.train.Saver(weights)

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    # train for 50 epochs on all 100 training examples, with a batchsize of 1.
    for _ in range(50):
        for i in range(100):
            batch_data = train_data[i,:]
            batch_labels = train_labels[i,:]

            feed_dict = {train_data_node: batch_data, train_labels_node: batch_labels}
            sess.run([train_op, loss, weights], feed_dict=feed_dict)
        saver.save(sess, '/results/weights')

def apply_model():
    sess = tf.Session()

    weights = defineWeights()

    new_saver = tf.train.import_meta_graph('/results/weights.meta')
    new_saver.restore(sess, tf.train.latest_checkpoint('/results'))

    print(model(np.random.random(5).astype(np.float32), weights).eval(session=sess))


def model(data, weights):
    # multiply the matrix weights['a'] with the vector data
    l1 = tf.matmul(tf.expand_dims(data,0), weights['a'])
    l1 = l1 + weights['b']
    return l1

def defineWeights():
    weights = {
        'a': tf.Variable(tf.random_normal([5, 5],
                                                        stddev=0.01,
                                                        dtype =  tf.float32),
                                                        name = 'a'),
        'b': tf.Variable(tf.random_normal([5]), name = 'b'),
        }
    return weights

在上面的代码中调用'run()'函数会出现以下错误:

Calling the 'run()' function in the code above gives the following error:

Traceback (most recent call last):
  File "<string>", line 1, in <module>
  File "/usr/local/lib/python2.7/dist-packages/myFolder/example.py", line 8, in run
    apply_model()
  File "/usr/local/lib/python2.7/dist-packages/myFolder/example.py", line 50, in apply_model
    print(model(np.random.random(5).astype(np.float32), weights).eval(session=sess))
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 569, in eval
    return _eval_using_default_session(self, feed_dict, self.graph, session)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 3741, in _eval_using_default_session
    return session.run(tensors, feed_dict)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 786, in run
    run_metadata_ptr)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 994, in _run
    feed_dict_string, options, run_metadata)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1044, in _do_run
    target_list, options, run_metadata)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1064, in _do_call
    raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.FailedPreconditionError: Attempting to use uninitialized value a_1
     [[Node: a_1/read = Identity[T=DT_FLOAT, _class=["loc:@a_1"], _device="/job:localhost/replica:0/task:0/gpu:0"](a_1)]]
     [[Node: add_2/_5 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/cpu:0", send_device="/job:localhost/replica:0/task:0/gpu:0", send_device_incarnation=1, tensor_name="edge_7_add_2", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"]()]]

Caused by op u'a_1/read', defined at:
  File "<string>", line 1, in <module>
  File "/usr/local/lib/python2.7/dist-packages/myFolder/example.py", line 8, in run
    apply_model()
  File "/usr/local/lib/python2.7/dist-packages/myFolder/example.py", line 45, in apply_model
    weights = defineWeights()
  File "/usr/local/lib/python2.7/dist-packages/myFolder/example.py", line 63, in defineWeights
    name = 'a'),
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/variables.py", line 197, in __init__
    expected_shape=expected_shape)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/variables.py", line 316, in _init_from_args
    self._snapshot = array_ops.identity(self._variable, name="read")
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_array_ops.py", line 1338, in identity
    result = _op_def_lib.apply_op("Identity", input=input, name=name)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py", line 768, in apply_op
    op_def=op_def)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2336, in create_op
    original_op=self._default_original_op, op_def=op_def)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1228, in __init__
    self._traceback = _extract_stack()

FailedPreconditionError (see above for traceback): Attempting to use uninitialized value a_1
     [[Node: a_1/read = Identity[T=DT_FLOAT, _class=["loc:@a_1"], _device="/job:localhost/replica:0/task:0/gpu:0"](a_1)]]
     [[Node: add_2/_5 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/cpu:0", send_device="/job:localhost/replica:0/task:0/gpu:0", send_device_incarnation=1, tensor_name="edge_7_add_2", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"]()]]


推荐答案

我编辑了您的代码以使其起作用-一种可能的方式!

I edited your code to make it work - One possible way ! Check it.

import tensorflow as tf
import numpy as np

# first train a linear model on random vectors of length 5 and store the trained parameters.
# Then load those parameters and try to apply them to a new vector.
def run():
    train_model()
    apply_model()

def train_model():
     # create random training data: 100 vectors of length 5 for both input and output.
     train_data  = np.random.random((100,5))
     train_labels = np.random.random((100,5))

     train_data_node = tf.placeholder(tf.float32, shape=(5), name="train_data_node")
     train_labels_node = tf.placeholder(tf.float32, shape=(5), name="train_labels_node")

     weights = defineWeights()

     prediction = model(train_data_node, weights)
     prediction = tf.identity(prediction, name="prediction")

     loss = tf.norm(prediction - train_labels_node)
     train_op = tf.train.AdagradOptimizer(learning_rate=1).minimize(loss)

     saver = tf.train.Saver()

     sess = tf.Session()
     sess.run(tf.global_variables_initializer())
     # train for 50 epochs on all 100 training examples, with a batchsize of 1.
     for _ in range(50):
        for i in range(100):
            batch_data = train_data[i,:]
            batch_labels = train_labels[i,:]

            feed_dict = {train_data_node: batch_data, train_labels_node: batch_labels}
            sess.run([train_op, loss, weights], feed_dict=feed_dict)
            saver.save(sess, 'results/model')
     print("Trained Weights")
     print(sess.run(weights))

def apply_model():
    sess = tf.Session()

    new_saver = tf.train.import_meta_graph('results/model.meta')
    new_saver.restore(sess, tf.train.latest_checkpoint('results'))


    print("Loaded Weights")
    print(sess.run(['a:0','b:0']))

    prediction = tf.get_default_graph().get_tensor_by_name("prediction:0")
    train_data_node = tf.get_default_graph().get_tensor_by_name("train_data_node:0")

    test_data = np.random.random(5).astype(np.float32)
    pred = sess.run([prediction],feed_dict={train_data_node:test_data})
    print("Prediction")
    print(pred)


def model(data, weights):
    # multiply the matrix weights['a'] with the vector data
    l1 = tf.matmul(tf.expand_dims(data,0), weights['a'])
    l1 = l1 + weights['b']
    return l1

def defineWeights():
    weights = {
       'a': tf.Variable(tf.random_normal([5, 5],
                                                    stddev=0.01,
                                                    dtype =  tf.float32),
                                                    name = 'a'),
       'b': tf.Variable(tf.random_normal([5]), name = 'b'),
    }
return weights

def main(_):
    run()

if __name__ == '__main__':
    tf.app.run(main=main)

输出:

Trained Weights
{'a': array([[ 0.01243415, -0.42879951,  0.0174435 , -0.24622701,  0.35309449],
   [ 0.03154161, -0.08194152,  0.09223857, -0.15719411, -0.06323836],
   [-0.03263358,  0.05096304,  0.1769278 , -0.17564282,  0.04325204],
   [-0.17412457, -0.00338688,  0.08468977, -0.06877152, -0.02180972],
   [ 0.25160244, -0.19224152,  0.14535131, -0.20594895, -0.03813718]], dtype=float32), 'b': array([ 0.33825615,  0.79861975,  0.30609566,  0.91897982,  0.20577262], dtype=float32)}
I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1060 6GB, pci bus id: 0000:01:00.0)
Loaded Weights
[array([[ 0.01243415, -0.42879951,  0.0174435 , -0.24622701,  0.35309449],
   [ 0.03154161, -0.08194152,  0.09223857, -0.15719411, -0.06323836],
   [-0.03263358,  0.05096304,  0.1769278 , -0.17564282,  0.04325204],
   [-0.17412457, -0.00338688,  0.08468977, -0.06877152, -0.02180972],
   [ 0.25160244, -0.19224152,  0.14535131, -0.20594895, -0.03813718]], dtype=float32), array([ 0.33825615,  0.79861975,  0.30609566,  0.91897982,  0.20577262], dtype=float32)]
Prediction
[array([[ 0.3465074 ,  0.42139536,  0.71310139,  0.30854774,  0.32671657]], dtype=float32)]

说明:


  1. 命名恢复后要访问的张量。

  2. 还原图形并恢复您命名的变量-显示在apply_model()

  3. 使用feed_dict将新的test_data馈入占位符

问题:


  1. 我尝试使用 sess.run(tf.global_variables_initializer( )),但是它正在将变量重新初始化为新的随机值。 (使用TF 1.0)

  1. I tried to use sess.run(tf.global_variables_initializer()) but it is re-initializing variables to new random values. (Using TF 1.0)

我希望这会有所帮助!

这篇关于如何在张量流中存储和重建权重字典的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

07-24 08:46