问题描述
在 TensorFlow 2.0 APIs 中有一个模块 tf.experimental代码>.这样的名字也出现在其他地方,比如
tf.data.experimental
.我只想知道设计这些模块的动机是什么.
In TensorFlow 2.0 APIs, there is a module tf.experimental
. Such a name also appears in other places like tf.data.experimental
. I just would like to know what the motivate for designing these modules is.
推荐答案
tf.experimental
表示所述类/方法处于早期开发、不完整或不太常见、未达到-标准.它是用户贡献的集合,尚未与主 TensorFlow 集成,但仍可作为开源的一部分供用户测试和提供反馈.
tf.experimental
indicates that the said class/method is in early development, incomplete, or less commonly, not up-to-standards. It's a collection of user contributions which weren't yet integrated w/ main TensorFlow, but are still available as a part of open-source for users to test and give feedback.
不完整"是最常见的,其中可能包括存在错误,或者未通过所需的一组平台或硬件(CPU/GPU)的测试.作为未达到标准"的示例,来自 2017 年 Google Devs tf.xla.experimental 上的 >blog:(更多详情请见 这个答案)
"Incomplete" is the most common, which can include having bugs, or not passing tests across a required set of platforms or hardware (CPU/GPU). As an example of not being "up to standards", from a 2017 Google Devs blog on tf.xla.experimental
: (more details in this answer)
XLA 仍应视为实验性的,某些基准测试可能会变慢
这篇关于TensorFlow 中的实验是什么意思?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!