本文介绍了在 ggplot2 中为绘制的 ACF 添加置信区间的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我计划为模拟时间序列构建自定义 ACF
和 PACF
图
ts
以下是我编写的通过 ggplot2
生成绘图的代码:
库(gridExtra)主题设置 <- 主题(panel.background = element_blank(),panel.grid.major.y = element_line(color="grey90", size=0.5),panel.grid.major.x = element_blank(),panel.border = element_rect(fill=NA, color="grey20"),axis.text = element_text(family="Times"),axis.title = element_text(family="Times"),plot.title = element_text(size=10, hjust=0.5, family="Times"))acf_ver_conf <- acf(ts, plot=FALSE)$acf %>%as_tibble() %>% 变异(滞后 = 1:n()) %>%ggplot(aes(x=lags, y = V1)) + scale_x_continuous(breaks=seq(0,41,4)) +实验室(y =自相关",x =滞后",标题=时间序列,ACF")+geom_segment(aes(xend=lags,yend=0))+geom_point()+主题设置pacf_ver_conf <- pacf(ts, main=NULL,plot=FALSE)$acf %>%as_tibble() %>% 变异(滞后 = 1:n()) %>%ggplot(aes(x=lags, y = V1)) +geom_segment(aes(xend=lags,yend=0)) +geom_point() + theme_setting +scale_x_continuous(breaks=seq(0,41,4))+实验室(y =偏自相关",x =滞后",标题=时间序列,PACF")grid.arrange(acf_ver_conf, pacf_ver_conf, ncol=2)
虽然这正是我想要的,但我不确定如何在 acf(ts)
和 pacf(ts)
中生成置信区间:
所以,我的问题分为两部分:
- 如何从统计上推导出 R 中自相关函数和偏自相关的置信区间的上限和下限?
- 如何将其绘制到第一张图上?我在考虑
geom_ribbon
,但如果有任何其他想法,我们将不胜感激!
解决方案
这可能有效(置信限的公式取自这里
alpha
ts.pacf <- pacf(ts, main=NULL,plot=TRUE)
alpha
I plan to build a customized ACF
and PACF
plot for a simulated time series
ts <- arima.sim(n=5300,list(order=c(2,0,1), ar=c(0.4,0.3), ma=-0.2))
Below are the codes I wrote to produce the plot through ggplot2
:
library(gridExtra)
theme_setting <- theme(
panel.background = element_blank(),
panel.grid.major.y = element_line(color="grey90", size=0.5),
panel.grid.major.x = element_blank(),
panel.border = element_rect(fill=NA, color="grey20"),
axis.text = element_text(family="Times"),
axis.title = element_text(family="Times"),
plot.title = element_text(size=10, hjust=0.5, family="Times"))
acf_ver_conf <- acf(ts, plot=FALSE)$acf %>%
as_tibble() %>% mutate(lags = 1:n()) %>%
ggplot(aes(x=lags, y = V1)) + scale_x_continuous(breaks=seq(0,41,4)) +
labs(y="Autocorrelations", x="Lag", title= "Time Series, ACF") +
geom_segment(aes(xend=lags, yend=0)) +geom_point() + theme_setting
pacf_ver_conf <- pacf(ts, main=NULL,plot=FALSE)$acf %>%
as_tibble() %>% mutate(lags = 1:n()) %>%
ggplot(aes(x=lags, y = V1)) +
geom_segment(aes(xend=lags, yend=0)) +geom_point() + theme_setting +
scale_x_continuous(breaks=seq(0,41,4))+
labs(y="Partial Autocorrelations", x="Lag", title= "Time Series, PACF")
grid.arrange(acf_ver_conf, pacf_ver_conf, ncol=2)
While this is exactly what I want, I am not sure how to produce the confidence intervals in acf(ts)
and pacf(ts)
:
So, my question has two parts:
- How to statistically derive the upper and lower bound of the confidence intervals for Autocorrelated Functions and Partial Autocorrelations in R?
- How would you plot it onto the first graph? I was thinking about
geom_ribbon
but any additional idea will be appreciated!
解决方案
This may work (the formula for the confidence limits are taken from here https://stats.stackexchange.com/questions/211628/how-is-the-confidence-interval-calculated-for-the-acf-function, may need some tweaking):
ts.acf <- acf(ts, plot=TRUE)
alpha <- 0.95
conf.lims <- c(-1,1)*qnorm((1 + alpha)/2)/sqrt(ts.acf$n.used)
ts.acf$acf %>%
as_tibble() %>% mutate(lags = 1:n()) %>%
ggplot(aes(x=lags, y = V1)) + scale_x_continuous(breaks=seq(0,41,4)) +
geom_hline(yintercept=conf.lims, lty=2, col='blue') +
labs(y="Autocorrelations", x="Lag", title= "Time Series, ACF") +
geom_segment(aes(xend=lags, yend=0)) +geom_point() + theme_setting
ts.pacf <- pacf(ts, main=NULL,plot=TRUE)
alpha <- 0.95
conf.lims <- c(-1,1)*qnorm((1 + alpha)/2)/sqrt(ts.pacf$n.used)
ts.pacf$acf %>%
as_tibble() %>% mutate(lags = 1:n()) %>%
ggplot(aes(x=lags, y = V1)) +
geom_segment(aes(xend=lags, yend=0)) +geom_point() + theme_setting +
scale_x_continuous(breaks=seq(0,41,4))+
geom_hline(yintercept=conf.lims, lty=2, col='blue') +
labs(y="Partial Autocorrelations", x="Lag", title= "Time Series, PACF")
这篇关于在 ggplot2 中为绘制的 ACF 添加置信区间的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!