问题描述
我想从系列中构建一个矩阵,但是在此之前,我必须对这些系列进行重新采样.但是,为了避免使用replace(np.nan, 0.0)
两次处理整个矩阵,我想将数据帧附加到收集的数据帧中,然后一次性删除NaN
值.
I want to build a matrix from series but before that I have to resample those series. However, to avoid processing the whole matrix twice with replace(np.nan, 0.0)
I want to append the dataframes to a collecting dataframe and then remove NaN
values in one pass.
所以不是
user_activities = user.groupby(["DOC_ACC_DT", "DOC_ACTV_CD"]).agg("sum")["SUM_DOC_CNT"].unstack().resample("1D").replace(np.nan, 0)
df = df.append(user_activities[activity].rename(user_id))
我想要
user_activities = user.groupby(["DOC_ACC_DT", "DOC_ACTV_CD"]).agg("sum")["SUM_DOC_CNT"].unstack().resample("1D")
df = df.append(user_activities[activity].rename(user_id))
但这不起作用,因为user_activities
不是resample()
之后的数据帧.
but that is not working because user_activities
is not a dataframe after resample()
.
该错误表明我尝试了apply()
,但是该方法需要一个参数:
The error suggests that I try apply()
but that method expects a parameter:
/usr/local/lib/python2.7/dist-packages/pandas/core/groupby.pyc in _make_wrapper(self, name)
507 "using the 'apply' method".format(kind, name,
508 type(self).__name__))
--> 509 raise AttributeError(msg)
510
511 # need to setup the selection
AttributeError: Cannot access callable attribute 'rename' of 'SeriesGroupBy' objects, try using the 'apply' method
我该如何解决这个问题?
How can I solve this issue?
推荐答案
.resample
的接口在Pandas 0.18.0中已更改,变得更加分组化,因此更加灵活,即resample
不再返回DataFrame:现在,它在汇总或插值时会懒惰地评估".
The interface to .resample
has changed in Pandas 0.18.0 to be more groupby-like and hence more flexible ie resample
no longer returns a DataFrame: it's now "lazyly evaluated" at the moment of the aggregation or interpolation.
我建议阅读重新采样API更改 http://pandas. pydata.org/pandas-docs/stable/whatsnew.html#resample-api
I suggest reading resample API changes http://pandas.pydata.org/pandas-docs/stable/whatsnew.html#resample-api
另请参阅:
http://pandas.pydata .org/pandas-docs/stable/generation/pandas.DataFrame.resample.html
df.resample("1D").interpolate()
缩小尺寸
使用均值
df.resample("1D").mean()
使用OHLC
即开高,低收盘价或第一个最大,最小,最后一个值
using OHLC
ie open high low close values or first maximal minimal last values
df.resample("1D").ohlc()
这篇关于如何将DatetimeIndexResampler转换为DataFrame?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!