本文介绍了Matlab图像中的自主接缝检测的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在尝试检测焊接图像中的接缝,以实现自主焊接过程.我想在原始图像中找到检测到的线(所需图像中的红线)的像素位置.

I'm trying to detect seams in welding images for an autonomous welding process.I want to find pixel positions of the detected line (the red line in the desired image) in the original image.

我使用了以下代码,最终去除了图像中的噪点,从而达到了以下结果.

I used the following code and finally removed noise from the image to reach the result below.

clc,clear,clf;
im = imread('https://i.stack.imgur.com/UJcKA.png');
imshow(im);title('Original image'); pause(0.5);
sim = edge(im, 'sobel');
imshow(sim);title('after Sobel'); pause(0.5);
mask = im > 5;
se = strel('square', 5);
mask_s = imerode(mask, se);
mask(mask_s) = false;
mask = imdilate(mask, se);
sim(mask) = false;
imshow(sim);title('after mask');pause(0.5);
sim= medfilt2(sim);
imshow(sim);title('after noise removal')

不幸的是,图像中没有剩余东西可以完美地找到接缝.

Unfortunately there is nothing remaining in the image to find the seam perfectly.

任何帮助将不胜感激.

下载原始图像.

推荐答案

您需要使滤波器对噪声更加鲁棒.可以通过提供更大的支持来实现:

You need to make your filter more robust to noise. This can be done by giving it a larger support:

filter = [ones(2,9);zeros(1,9);-ones(2,9)];
msk = imerode(im > 0, ones(11));  % only object pixels, discarding BG
fim =imfilter(im,filter);
robust = bwmorph((fim>0.75).*msk,'skel',inf); % get only strong pixels

健壮的面具看起来像:

如您所见,接缝线已被很好地检测到,我们只需要选择它作为最大的连接组件:

As you can see, the seam line is well detected, we just need to pick it as the largest connected component:

st = regionprops(bwlabel(robust,8), 'Area', 'PixelList');
[ma mxi] = max([st.Area]); % select the region with the largest area

现在,我们可以将多边形(第2度)拟合为外观了:

Now we can fit a polygon (2nd degree) to the seem:

pp=polyfit(st(mxi).PixelList(:,1), st(mxi).PixelList(:,2), 2);

这是图片的上方:

imshow(im, 'border','tight');hold on;
xx=1:size(im,2);plot(xx,polyval(pp,xx)+2,'r');

请注意由于滤镜宽度而导致的+2 Y偏移量.

Note the +2 Y offset due to filter width.

PS,
您可能会发现此线程相关.

PS,
You might find this thread relevant.

这篇关于Matlab图像中的自主接缝检测的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-23 16:55