问题描述
我想执行指数加权移动平均值(在此处中定义参数设置>)在R中的向量上.有没有比我下面的第一次尝试更好的实现?
I'd like to perform an exponentially weighted moving average (with parameterization defined here) on a vector in R. Is there a better implementation than my first attempt below?
我的第一次尝试是:
ewma <- function(x, a) {
n <- length(x)
s <- rep(NA,n)
s[1] <- x[1]
if (n > 1) {
for (i in 2:n) {
s[i] <- a * x[i] + (1 - a) * s[i-1]
}
}
return(s)
}
y <- 1:1e7
system.time(s <- ewma(y,0.5))
#user system elapsed
# 2.48 0.00 2.50
在第二次尝试中,我认为可以通过向量化来做得更好:
In my second attempt, I thought I could do better by vectorizing:
ewma_vectorized <- function(x,a) {
a <- 0.1
n <- length(x)
w <- cumprod(c(1, rep(1-a, n-1)))
x1_contribution <- w * x[1]
w <- a * w
x <- x[-1]
s <- apply(as.array(1:(n-1)), 1, function(i,x,w){sum(w[i:1] * x[1:i])}, x=x, w=w)
s <- x1_contribution + c(0,s)
return(s)
}
system.time(s <- ewma_vectorized(y,0.5))
# I stopped the program after it continued to run for 4min
我想我应该不会对第二次尝试的结果感到惊讶.在矢量化方面,这是一个非常丑陋的尝试.但是必须有 like 这样的东西,在我的第一次尝试时会有所改善...对吗?
I guess I shouldn't have been too surprised by the results in my second attempt. It was a pretty ugly attempt at vectorization. But there has to be something like this that improves on my first attempt...right?
更新:
我确实在此处找到了更好的实现,并对其进行了如下修改:
I did find a better implementation here and adapted it as follows:
ewma_vectorized_v2 <- function(x, a) {
s1 <- x[1]
sk <- s1
s <- vapply(x[-1], function(x) sk <<- (1 - a) * x + a * sk, 0)
s <- c(s1, s)
return(s)
}
system.time(s <- ewma_vectorized_v2(y,0.5))
# user system elapsed
# 1.74 0.01 1.76
推荐答案
您可以使用 stats :: filter
:
ewma.filter <- function (x, ratio) {
c(filter(x * ratio, 1 - ratio, "recursive", init = x[1]))
}
set.seed(21)
x <- rnorm(1e4)
all.equal(ewma.filter(x, 0.9), ewma(x, 0.9))
# [1] TRUE
这比您初次尝试的编译版本要快一点:
This is a bit faster than the compiled version of your first attempt:
ewma <- compiler::cmpfun(function(x, a) {
n <- length(x)
s <- rep(NA,n)
s[1] <- x[1]
if (n > 1) {
for (i in 2:n) {
s[i] <- a * x[i] + (1 - a) * s[i-1]
}
}
return(s)
})
microbenchmark(ewma.filter(x,0.9), ewma(x, 0.9))
Unit: microseconds
expr min lq median uq max neval
ewma.filter(x, 0.9) 318.508 341.7395 368.737 473.254 1477.000 100
ewma(x, 0.9) 1364.997 1403.4015 1458.961 1503.876 2221.252 100
这篇关于指数加权移动平均值的快速R实现?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!