本文介绍了 pandas 将“时间"列添加到“日期"索引的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有一个数据框,日期索引类型为 Timestamp ,时间"列为 datetime.Time :
I have a dataframe, Date index type is Timestamp, Time column is datetime.Time:
Time Value
Date
2004-05-01 0:15 3.58507
2004-05-02 0:30 3.84625
...
如何将其转换为:
Value
Date
2004-05-01 0:15 3.74618
2004-05-01 0:30 3.58507
2004-05-01 0:45 3.30998
我写了一个行得通的代码,但是它不是很pythonic:
I wrote a code which does work, but it's not very pythonic:
ind = frame.index.get_level_values(0).tolist()
tms = frame['Time']
new_ind = []
for i in range(0, len(ind)):
tm = tms[i]
val = ind[i] + timedelta(hours=tm.hour, minutes=tm.minute, seconds=tm.second)
new_ind.append(val)
frame.index = new_ind
del frame['Time']
推荐答案
您可以先转换列Time
to_timedelta
,然后添加到index
, drop
列Time
,并在必要时设置索引name
:
You can first convert column Time
to_timedelta
, then add to index
, drop
column Time
and if necessary set index name
:
df.Time = pd.to_timedelta(df.Time + ':00', unit='h')
df.index = df.index + df.Time
df = df.drop('Time', axis=1)
df.index.name = 'Date'
print (df)
Value
Date
2004-05-01 00:15:00 3.58507
2004-05-02 00:30:00 3.84625
如果对我来说列Time
是datetime.time
,则首先将其转换为string
(如有必要,请添加:00
):
If column Time
is datetime.time
for me works cast to string
first (if necessary add :00
):
df.Time = pd.to_timedelta(df.Time.astype(str), unit='h')
df.index = df.index + df.Time
df = df.drop('Time', axis=1)
df.index.name = 'Date'
print (df)
Value
Date
2004-05-01 00:15:00 3.58507
2004-05-02 00:30:00 3.84625
这篇关于 pandas 将“时间"列添加到“日期"索引的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!