本文介绍了NumPy - 使用强度值矩阵进行图像(矩阵)阈值处理。的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧! 问题描述 29岁程序员,3月因学历无情被辞! 我需要在灰度图像中分割出异常。在算法的某个地方,我计算一个矩阵,其中包含我需要设置为零的已知像素强度。我该怎么做?I need to segment out anomalies in a greyscale image. In a certain place in my algorithm, I compute a matrix that contains the known pixel intensities that I need to set to zero. How would I do this?例如: 计算出的像素强度:(数组([94,95,96, 97,98,99,100,101,102,103,104,105,106, 107,108,109,110,111,112,113,114,115,116,117,118,119, 120,121,122,123,124,125,126,127,128,129,130​​,131,132, 133,134,135,136,137,138,139,140, 141,142,143,144,145, 146,147,148,149,150,151]),) 图片大小(480,640): 印刷它给出: [[86 90 97 ...,142 152 157] [85 89 97 ...,145 154 158] [83 87 95 ...,154 158 159] ..., [130 134 139 ...,156 154 154] [130 134 140 ...,154 153 152] [130 134 141 ...,154 153 152]]For example:The computed pixel intensities:(array([ 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151]),)The picture is of size (480,640) :Printed it gives: [[ 86 90 97 ..., 142 152 157] [ 85 89 97 ..., 145 154 158] [ 83 87 95 ..., 154 158 159] ..., [130 134 139 ..., 156 154 154] [130 134 140 ..., 154 153 152] [130 134 141 ..., 154 153 152]]我意识到,对于每个像素,我都可以通过强度矩阵。然而,这将太昂贵。 NumPy专家我需要你的帮助!I realize that for each pixel I could go through the intensity matrix. This would, however, be too expensive. NumPy experts I need your help!推荐答案要将图像数组中所有像素设置为零,其值为91到151,包容性,使用:To set to zero all pixels in an image array which have values from 91 to 151, inclusive, use:import numpy as npnewimage = np.where(np.logical_and(91<=oldimage, oldimage<=151), 0, oldimage)将图像数组中的所有像素设置为零其值属于某个数组 vct ,请使用:To set to zero all pixels in an image array whose values belong to some array vct, use:newimage = np.where(np.in1d(oldimage, vct).reshape(oldimage.shape), 0, oldimage) 示例 假设我们有一个 oldimage ,就像这样:In [12]: oldimageOut[12]:array([[0, 1, 2], [3, 4, 5]])我们有一个名为的数字列表vct :In [13]: vctOut[13]: array([3, 5])让我们将所有像素设为零n oldimage 也在 vct :Let's set to zero all pixels in oldimage that are also in vct:In [14]: newimage = np.where(np.in1d(oldimage, vct).reshape(oldimage.shape), 0, oldimage)In [15]: newimageOut[15]:array([[0, 1, 2], [0, 4, 0]]) 这篇关于NumPy - 使用强度值矩阵进行图像(矩阵)阈值处理。的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持! 上岸,阿里云!
08-15 10:30