问题描述
考虑以下代码:
#include <iostream>
#include <tuple>
#include <utility>
// A.
template <typename... Args>
void f (const char* msg, Args&&... args)
{
std::cout << "A. " << msg << "\n";
}
// B.
template <typename... Args>
void f (const char* msg, std::tuple<Args...>&& t)
{
std::cout << "B. " << msg << "\n";
}
struct boo
{
const std::tuple<int, int, long> g () const
{
return std::make_tuple(2, 4, 12345);
}
};
int main ()
{
f("First", 2, 5, 12345);
f("Second", std::make_tuple(2, 5, 12345));
boo the_boo;
f("Third", the_boo.g());
f("Fourth", std::forward<decltype(std::declval<boo>().g())>(the_boo.g()));
return 0;
}
输出将是:
A. First
B. Second
A. Third
A. Fourth
从输出中可以明显看出它没有做我希望它做的事情,也就是说,我希望 Third 和 Fourth 通过 B. 版本的函数.Fourth 调用中的 std::forward 是多余的,因为那里不会发生完美的转发.为了有完美的转发,我知道:
From the output it's evident that it does not do what I would like it to do, that is I would like Third and Fourth to go through the B. version of the function.The std::forward from the Fourth call is superfluous as perfect forwarding does not happen there. In order to have perfect forwarding I know:
- 我必须在类型推导上下文中有一个右值引用
- 参数的类型必须是函数的模板类型
我知道它不起作用.但我没有完全掌握:
I understand it does not work. But I do not fully grasp:
为什么使用 std::tuple 来改变上下文以致无法按预期工作?为什么模板参数不能是类型对于另一种模板化类型?
why the context is changed by using std::tuple in such a way that it fails to work as desired ? Why the template parameter cannot be the typefor another templated type?
我该如何(优雅地)修复它?
how can I(elegantly) fix it ?
推荐答案
你的问题是在第三和第四你传递了一个 const std::tuple
其中 B. 期望一个非常量版本.
Your issue is that in Third and Fourth you are passing a const std::tuple
where B. expects a non-const version.
当编译器尝试为对 f
的调用生成代码时,它看到您正在使用 const std::tuple
进行调用,因此推断出 f
的类型code>Args... 为 const std::tuple
.调用 B. 无效,因为该变量具有与预期不同的常量限定.
When the compiler attempts to generate code for the call to f
, it sees that you are calling with a const std::tuple
and so deduces the type of Args...
to be const std::tuple
. Calling B. is not valid because the variable has a different const-qualification than expected.
要解决这个问题,只需让 g()
返回一个非常量元组.
To solve this, just make g()
return a non-const tuple.
为了实现完美转发,您需要一个推断的上下文,正如您在问题中所说.当你在函数参数列表中说 std::tuple 时,推导出
Args...
,但 std::tuple&&
不是;它可以仅通过右值引用.为了解决这个问题,该参数需要采用 T&&
的形式,其中 T
是推导出来的.
In order for perfect forwarding to occur, you need a deduced context, as you say in your question. When you say std::tuple<Args...>&&
in the function argument list, Args...
is deduced, but std::tuple<Args...>&&
is not; it can only by an rvalue reference. In order to fix this, that argument needs to be of the form T&&
where T
is deduced.
我们可以使用自定义类型特征来实现:
We can accomplish this using a custom type trait:
template <typename T>
struct is_tuple : std::false_type {};
template <typename... Args>
struct is_tuple <std::tuple<Args...>> : std::true_type {};
然后我们使用这个特性来为元组启用单参数模板:
Then we use this trait to enable a single-argument template for tuples only:
// B.
template <typename T, typename = typename std::enable_if<
is_tuple<typename std::decay<T>::type>::value
>::type>
void f (const char* msg, T&& t)
{
std::cout << "B. " << msg << "\n";
std::cout << "B. is lval == " << std::is_lvalue_reference<T>() << "\n";
}
或者:
//! Tests if T is a specialization of Template
template <typename T, template <typename...> class Template>
struct is_specialization_of : std::false_type {};
template <template <typename...> class Template, typename... Args>
struct is_specialization_of<Template<Args...>, Template> : std::true_type {};
template <typename T>
using is_tuple = is_specialization_of<T, std::tuple>;
is_specialization_of 取自 此处 并由 this 建议问题.
现在我们有了完美的转发!
Now we have perfect forwarding!
int main ()
{
f("First", 2, 5, 12345);
f("Second", std::make_tuple(2, 5, 12345));
boo the_boo;
f("Third", the_boo.g());
f("Fourth", std::forward<decltype(std::declval<boo>().g())>(the_boo.g()));
auto the_g = the_boo.g();
f("Fifth", the_g);
return 0;
}
输出:
A. First
B. Second
B. is lval == 0
B. Third
B. is lval == 0
B. Fourth
B. is lval == 0
B. Fifth
B. is lval == 1
这篇关于完美转发和 std::tuple的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!