问题描述
我有一个具有80%分类变量的机器学习分类问题.如果要使用一些分类器进行分类,是否必须使用一种热编码?我可以在没有编码的情况下将数据传递给分类器吗?
I have a machine learning classification problem with 80% categorical variables. Must I use one hot encoding if I want to use some classifier for the classification? Can i pass the data to a classifier without the encoding?
我正在尝试进行以下功能选择:
I am trying to do the following for feature selection:
-
我阅读了火车文件:
I read the train file:
num_rows_to_read = 10000
train_small = pd.read_csv("../../dataset/train.csv", nrows=num_rows_to_read)
我将类别特征的类型更改为类别":
I change the type of the categorical features to 'category':
non_categorial_features = ['orig_destination_distance',
'srch_adults_cnt',
'srch_children_cnt',
'srch_rm_cnt',
'cnt']
for categorical_feature in list(train_small.columns):
if categorical_feature not in non_categorial_features:
train_small[categorical_feature] = train_small[categorical_feature].astype('category')
我使用一种热编码:
I use one hot encoding:
train_small_with_dummies = pd.get_dummies(train_small, sparse=True)
问题是,尽管我使用的是坚固的机器,但第3部分经常卡住.
The problem is that the 3'rd part often get stuck, although I am using a strong machine.
因此,没有一种热编码,我就无法进行任何特征选择来确定特征的重要性.
Thus, without the one hot encoding I can't do any feature selection, for determining the importance of the features.
您推荐什么?
推荐答案
方法1:您可以在熊猫数据框上使用get_dummies.
示例1:
import pandas as pd
s = pd.Series(list('abca'))
pd.get_dummies(s)
Out[]:
a b c
0 1.0 0.0 0.0
1 0.0 1.0 0.0
2 0.0 0.0 1.0
3 1.0 0.0 0.0
示例2:
以下内容将给定的列转换为一个热门列.使用前缀可以有多个假人.
The following will transform a given column into one hot. Use prefix to have multiple dummies.
import pandas as pd
df = pd.DataFrame({
'A':['a','b','a'],
'B':['b','a','c']
})
df
Out[]:
A B
0 a b
1 b a
2 a c
# Get one hot encoding of columns B
one_hot = pd.get_dummies(df['B'])
# Drop column B as it is now encoded
df = df.drop('B',axis = 1)
# Join the encoded df
df = df.join(one_hot)
df
Out[]:
A a b c
0 a 0 1 0
1 b 1 0 0
2 a 0 0 1
方法2:使用Scikit学习
给定具有三个特征和四个样本的数据集,我们让编码器找到每个特征的最大值,然后将数据转换为二进制的一键编码.
Given a dataset with three features and four samples, we let the encoder find the maximum value per feature and transform the data to a binary one-hot encoding.
>>> from sklearn.preprocessing import OneHotEncoder
>>> enc = OneHotEncoder()
>>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])
OneHotEncoder(categorical_features='all', dtype=<class 'numpy.float64'>,
handle_unknown='error', n_values='auto', sparse=True)
>>> enc.n_values_
array([2, 3, 4])
>>> enc.feature_indices_
array([0, 2, 5, 9], dtype=int32)
>>> enc.transform([[0, 1, 1]]).toarray()
array([[ 1., 0., 0., 1., 0., 0., 1., 0., 0.]])
这里是此示例的链接: http://scikit-learn.org/stable/modules/generation/sklearn.preprocessing.OneHotEncoder.html
Here is the link for this example: http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
这篇关于如何在Python中进行热编码?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!