本文介绍了树递归-打印给定数字的子序列的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
// m is the number, n is upto-length of subsequences
// m = 20125, n =3 should print 201, 202, 205, 212, 215, 225, 012, 015, 125
// m = 20125, n =2 should print 20, 21, 22, 25, 01, 02, 05, 12, 15, 25
// m = 20125, n =1 should print 2, 0, 1, 2, 5
// m = 20125, n =4 should print 2012, 2015, 2125, 0125, 2025
// m = 20125, n =5 should print 20125
以下是在GoLang中实现的递归解决方案:
Below is the recursive solution implemented in GoLang:
package recursion
import (
"fmt"
"strconv"
)
// m is the number, n is upto-length of subsequences
// m = 20125, n =3 should print 201, 202, 205, 212, 215, 225, 012, 015, 125
// m = 20125, n =2 should print 20, 21, 22, 25, 01, 02, 05, 12, 15, 25
// m = 20125, n =1 should print 2, 0, 1, 2, 5
// m = 20125, n =4 should print 20125
func PrintSubSequence(m int, n int) {
numDigits := digits(m)
if n >= 1 && numDigits >= n { // m != 0
for i := 1; i <= numDigits-n+1; i++ { // tree recurion
firstInvocToIter := true
var slice []string
var findSubSequence func(int, int)
findSubSequence = func(m int, n int) {
if n == 1 { // base case
for m != 0 {
slice = append(slice, strconv.Itoa(m%10))
m = m / 10
}
return
} else {
if firstInvocToIter {
firstInvocToIter = false
findSubSequence(m/tenToThePower(i), n-1)
} else {
findSubSequence(m/10, n-1)
}
for i, value := range slice {
slice[i] = value + strconv.Itoa(m%10)
}
}
}
findSubSequence(m, n) // (20125, 3)
fmt.Println(slice)
}
} else {
return
}
PrintSubSequence(m/10, n)
}
func tenToThePower(times int) int {
number := 1
for times > 0 {
number *= 10
times--
}
return number
}
// Return the number of the digits of positive integer n
func digits(n int) int {
if n <= 0 {
return 0
} else if n < 10 {
return 1
} else {
allButLast, _ := split(n)
return digits(allButLast) + 1
}
}
package main
import (
"github.com/myhub/cs61a/recursion"
)
func main() {
recursion.PrintSubSequence(20125, 2) // prints duplicates as per debugging
recursion.PrintSubSequence(20125, 3) // Works fine
}
对于recursion.PrintSubSequence(20125, 3)
输出可以:
For recursion.PrintSubSequence(20125, 3)
output is fine:
[125 025 225]
[015 215]
[205]
[012 212]
[202]
对于recursion.PrintSubSequence(20125, 2)
输出有重复项(问题输出):
For recursion.PrintSubSequence(20125, 2)
output has duplicates(problem output):
[25 15 05 25] --> Valid
[15 05 25] --> duplicate
[05 25] --> duplicate
[25] --> duplicate
[12 02 22] --> Valid
[02 22] --> duplicate
[22] --> duplicate
[01 21] --> Valid
[21] --> duplicate
[20] --> Valid
这是否需要维护一组字符串?将slice
包含在集合中
Does this require maintaining a set of strings? to include slice
in a set
或
如何处理重复项?看起来n==1
树递归的基本情况给问题了吗?
How to handle duplicates? Looks like n==1
base case of tree recursion is giving issue?
推荐答案
此处此处:-
- 您需要从每个数字的角度进行思考.因此,当您生成子序列时,数字可以是子序列的一部分,也可以不是.
- 当您考虑一个特定的数字时,增加一个计数器(例如currentLength).将到目前为止形成的序列添加到Set中,以避免重复.
- 如果currentLength计数器已达到给定的最大长度,则停止形成当前子序列.
- 移至下一个序列形成.
- You need to think from a each digit perspective.So, when you generating subsequence, either a digit can be part of the subsequence, or it cannot be.
- When you consider a particular digit, increment a counter (say, currentLength).Add the sequence which is formed till now to a Set to avoid duplicates.
- If the currentLength counter has reached your given upto-length, then stop the formation of current subsequence.
- Move onto next sequence formation.
这篇关于树递归-打印给定数字的子序列的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!