本文介绍了使用Python lfilter过滤信号的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我是Python的新手,在过滤信号时完全被卡住了.这是代码:

I'm new with Python and I'm completely stuck when filtering a signal. This is the code:

import numpy as np
import matplotlib.pyplot as plt
from scipy import signal

fs=105e6
fin=70.1e6

N=np.arange(0,21e3,1)

# Create a input sin signal of 70.1 MHz sampled at 105 MHz
x_in=np.sin(2*np.pi*(fin/fs)*N)

# Define the "b" and "a" polynomials to create a CIC filter (R=8,M=2,N=6)
b=np.zeros(97)
b[[0,16,32,48,64,80,96]]=[1,-6,15,-20,15,-6,1]
a=np.zeros(7)
a[[0,1,2,3,4,5,6]]=[1,-6,15,-20,15,-6,1]

w,h=signal.freqz(b,a)
plt.plot(w/max(w),20*np.log10(abs(h)/np.nanmax(h)))
plt.title('CIC Filter Response')

output_nco_cic=signal.lfilter(b,a,x_in)

plt.figure()
plt.plot(x_in)
plt.title('Input Signal')
plt.figure()
plt.plot(output_nco_cic)
plt.title('Filtered Signal')

情节:

如您所见,尽管过滤器传递函数正确,但输出却不正确.而且我看不到为什么我的代码无法正常工作.我已经在Matlab中编写了相同的代码,输出看起来还可以.

As you can see, although the filter transfer function is correct, the output isn't. And I can't see why my code isn't working. I've coded the same in Matlab and the output looks ok.

需要帮助!

推荐答案

我发现这不适用于Python,但我确实感到困惑,无法与Matlab一起使用.

I don't find it confusing that this didn't work with Python, but I do find it confusing that it worked with Matlab.

CIC过滤器不适用于浮点数.

CIC filters don't work with floating point numbers.

更新:

有趣的是,至少对于我拥有的scipy版本,lfilter不适用于整数数组-我收到NotImplemented错误.这是CIC过滤器的Numpy版本,大约是我机器上纯Python实现速度的两倍:

Interestingly, at least with the version of scipy I have, lfilter doesn't work with integer arrays -- I get a NotImplemented error. Here is a numpy version of a CIC filter that is about twice as fast as a pure Python implementation on my machine:

# Implements an in-memory CIC decimator using numpy.

from math import log
from numpy import int32, int64, array

def cic_decimator(source, decimation_factor=32, order=5, ibits=1, obits=16):

    # Calculate the total number of bits used internally, and the output
    # shift and mask required.
    numbits = order * int(round(log(decimation_factor) / log(2))) + ibits
    outshift = numbits - obits
    outmask  = (1 << obits) - 1

    # If we need more than 64 bits, we can't do it...
    assert numbits <= 64

    # Create a numpy array with the source
    result = array(source, int64 if numbits > 32 else int32)

    # Do the integration stages
    for i in range(order):
        result.cumsum(out=result)

    # Decimate
    result = array(result[decimation_factor - 1 : : decimation_factor])

    # Do the comb stages.  Iterate backwards through the array,
    # because we use each value before we replace it.
    for i in range(order):
        result[len(result) - 1 : 0 : -1] -= result[len(result) - 2 : : -1]

    # Normalize the output
    result >>= outshift
    result &= outmask
    return result

这篇关于使用Python lfilter过滤信号的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

07-23 01:51