本文介绍了用于计算左手坐标的叉积变化的方法?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
用于计算左手坐标的叉积变化的方法是什么?
解决方案用于计算左手坐标的叉积变化的方法是什么?
解决方案向量(x1,x2,x3)
和(y1,y2,y3)
是
z1 = x2 * y3 - x3 * y2
z2 = x3 * y1 - x1 * y3
z3 = x1 * y2 - x2 * y1
它被设计成三个向量 x
, y
和 z
具有与坐标系本身相同的旋向性。该属性不依赖于坐标系的旋向性 - 对于左手坐标系,矢量满足左手规则。你不需要改变公式的任何内容。
有用的链接:
Does the method for computing the cross-product change for left handed coordinates?
The formula for the cross product of the vectors (x1, x2, x3)
and (y1, y2, y3)
is
z1 = x2 * y3 - x3 * y2
z2 = x3 * y1 - x1 * y3
z3 = x1 * y2 - x2 * y1
It is designed in a way that the three vectors x
, y
and z
in the given order have the same handedness as the coordinate system itself. This property does not depend on the handedness of the coordinate system -- for a left-handed coordinate system the vectors fulfil the left-hand rule. You don't need to change anything about the formula.
Useful links:
这篇关于用于计算左手坐标的叉积变化的方法?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!