问题描述
假设我有 x = rnorm(100000)
而不是做一个 1000
长度的滑动窗口移动平均线,我想做一个 1000
> 计算 x
高于 0.2
的所有时间的长度滑动窗口.
Suppose I have x = rnorm(100000)
and instead of doing a 1000
length sliding window moving average, I wanted to do a 1000
length sliding window that counts all the times that x
is above 0.2
.
例如
x <- rnorm(1004)
start <- 1:1000
record <- list()
while(start[length(start)] <= length(x)) {
record[[length(record) + 1]] <- length(which(x[start] > 0.2))/length(start)
start <- start + 1
print(record[[length(record)]]);flush.console()
}
对于大length(x)
,这变得难以控制.什么是高效的方法?
This becomes unmanegable for large length(x)
. What is a highly efficient method?
推荐答案
我的贡献是计算条件累积总和之间的滞后差
My contribution is to calculate the lagged difference between the cumulative sum of the condition
cumdiff = function(x) diff(c(0, cumsum( x > .2)), 20)
随着
filt = function(x) filter(x > 0.2, rep(1, 20), sides=1)
library(TTR); ttr = function(x) runSum(x > .2, 20)
cumsub = function(x) { z <- cumsum(c(0, x>0.2)); tail(z,-20) - head(z,-20) }
表现正常
> library(microbenchmark)
> set.seed(123); xx = rnorm(100000)
> microbenchmark(cumdiff(xx), filt(xx), ttr(xx), cumsub(xx))
Unit: milliseconds
expr min lq median uq max neval
cumdiff(xx) 11.192005 12.387862 12.469253 12.77588 13.72404 100
filt(xx) 20.979503 22.058045 22.442765 23.02612 62.91730 100
ttr(xx) 8.390923 10.023934 10.119772 10.46309 11.04173 100
cumsub(xx) 7.015654 8.483432 8.538171 8.73596 9.65421 100
这些在如何表示结果的细节上有所不同(例如,filt
和 ttr
具有领先的 NA)并且只有 filter
交易带有嵌入式 NA
These differ in the specifics of how the result is represented (filt
and ttr
have leading NAs, for instance) and only filter
deals with embedded NA's
> xx[22] = NA
> head(cumdiff(xx)) # NA's propagate, silently
[1] 9 9 NA NA NA NA
> ttr(xx)
Error in runSum(x > 0.2, 20) : Series contains non-leading NAs
> tail(filt(xx), -19)
[1] 9 9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 8 8 9
...
这篇关于通过滑动窗口计算事件的快速方法的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!