本文介绍了识别车牌的字符的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧! 问题描述 29岁程序员,3月因学历无情被辞! 我尝试使用OCR识别车牌的字符,但我的车牌质量较差。 我试图以某种方式改善OCR的字符识别,但我最好的结果是:result。 即使tesseract对此图片不承认任何字符。我的代码是: #include< cv.h> // open cv general include file #include< highgui.h> //打开cv GUI包含文件 #include< iostream> // standard C ++ I / O #include< opencv2 / highgui / highgui.hpp> #include< opencv2 / imgproc / imgproc.hpp> #include< string> using namespace cv; int main(int argc,char ** argv) { Mat src; Mat dst; Mat const structure_elem = getStructuringElement( MORPH_RECT,Size(2,2)); src = imread(argv [1],CV_LOAD_IMAGE_COLOR); //读取文件 cvtColor(src,src,CV_BGR2GRAY); imshow(plate,src); GaussianBlur(src,src,Size(1,1),1.5,1.5); imshow(blur,src); equalizeHist(src,src); imshow(equalize,src); adaptiveThreshold(src,src,255,ADAPTIVE_THRESH_GAUSSIAN_C,CV_THRESH_BINARY,15,-1); imshow(threshold,src); morphologyEx(src,src,MORPH_CLOSE,structure_elem); imshow(morphological operation,src); imwrite(end.jpg,src); waitKey(0); return 0; } 我的问题是,你知道如何获得更好的结果吗?更清晰的图像?尽管我的牌照质量较差,因此结果可能会读取OCR(例如Tesseract)。 感谢您的回答。 解决方案一个可能的算法来清理图像如下: 缩放图片,以使字母更加显着。 将图片缩小到只有8种颜色 对图片进行阈值处理,并将其填充到任何小空白处,使字母更加显着。 创建相同尺寸的空白蒙版图像,设置为全零。 在图像中查找轮廓。对于每个轮廓: 查找轮廓的边界框 查找边界框的区域 如果面积太小或太大,则丢弃轮廓(我选择1000和10000作为限制) 否则绘制一个对应于边框的填充矩形 li>对于每个分隔的字符(边框+图像) 识别字符 注意:我在Python 2.7中使用OpenCV 3.1进行了原型化。此代码的C ++端口接近此答案的结尾。 字符识别 我从 train_letters.png : 然后我写了一个脚本,单个字符,缩放并准备每个文件包含单个字符的训练图像: import os import cv2 import numpy as np #================================= ========================================= def extract_chars(img): bw_image = cv2.bitwise_not(img) contoururs = cv2.findContours(bw_image,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)[1] char_mask = np.zeros_like(img) bounding_boxes = [] 轮廓中的轮廓:x,y,w,h = cv2.boundingRect(contour)x,y,w ,h = x-2,y-2,w + 4,h + 4 bounding_boxes.append((x,y,w,h)) characters = [] for bbox in bounding_boxes:x,y,w,h = bbox char_image = img [y:y + h,x:x + w] characters.append (char_image) 返回字符 #========================== ============================ def output_chars(chars,labels): for i,char in enumerate(chars): filename =chars /%s.png%labels [i] char = cv2.resize(char ,None ,fx = 3 ,fy = 3 ,interpolation = cv2.INTER_CUBIC) cv2.imwrite ,char) #========================== ==================================== 如果不是os。 path.exists(chars): os.makedirs(chars) img_digits = cv2.imread(train_digits.png,0) img_letters = cv2 .imread(train_letters.png,0) digits = extract_chars(img_digits) letters = extract_chars(img_letters) DIGITS = [0,9,范围(25,-1,-1)中的i的 LETTERS = [chr(ord('A')+ i]] output_chars(digits,DIGITS) output_chars(letters,LETTERS) #===================== ==================================================== ======= 我遵循上述问题的答案中的算法,将每个字符图像的大小调整为 我将训练数据保存为 char_samples.data 和 char_responses.data 生成训练数据的脚本: import cv2 import numpy as np CHARS = [chr(ord('0')+ i)for i in range(10)] +范围(26)中的i的chr(ord('A')+ i)] #==================== ====================================================在CHARS中的字符: char_img = cv2.imread(chars /%s。) def load_char_images(): characters = {} png%char,0) characters [char] = char_img 返回字符 #================== ==================================================== ======== characters = load_char_images() samples = np.empty((0,100))用于CHARS中的char: char_img = characters [char] small_char = cv2.resize(char_img,(10,10)) sample = small_char.reshape((1,100)) samples = np.append示例,样例,0) responses = np.array([ord(c)for c in CHARS],np.float32) responses = responses.reshape 1)) np.savetxt('char_samples.data',samples) np.savetxt('char_responses.data',responses) # ==================================================== ======================== 一旦我们创建了训练数据,我们就可以运行主脚本: import cv2 import numpy as np #======================== ============================ def reduce_colors(img,n): Z = img.reshape(( - 1,3)) #转换为np.float32 Z = np.float32(Z) #定义条件,集群数(K)和应用kmeans() criteria =(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER,10,1.0) K = n ret,label,center = cv2.kmeans(Z,K,None,criteria,10,cv2.KMEANS_RANDOM_CENTERS) 现在转换回uint8, make original image center = np.uint8(center) res = center [label.flatten()] res2 = res.reshape((img.shape)) return res2 #======================== ====================================== def clean_image (img): gray_img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) resized_img = cv2.resize(gray_img ,None ,fx = 5.0 ,fy = 5.0 ,interpolation = cv2.INTER_CUBIC) resized_img = cv2.GaussianBlur(resized_img,(5,5),0) cv2.imwrite 'licence_plate_large.png',resized_img) equalized_img = cv2.equalizeHist(resized_img) cv2.imwrite('licence_plate_equ.png',equalized_img) reduced = cv2.cvtColor(reduce_colors(cv2.cvtColor(equalized_img,cv2.COLOR_GRAY2BGR),8),cv2.COLOR_BGR2GRAY) cv2.imwrite('licence_plate_red.png',reduced) ret,mask = cv2.threshold(reduced,64,255,cv2.THRESH_BINARY) cv2.imwrite('licence_plate_mask.png',mask) kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(3,3)) mask = cv2.erode(mask,kernel,iterations = 1) cv2.imwrite('licence_plate_mask2.png',mask) return mask #================================= =========================================== def extract_characters(img): bw_image = cv2.bitwise_not(img) contoururs = cv2.findContours(bw_image,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)[1] char_mask = np.zeros_like(img) bounding_boxes = [] 轮廓中的轮廓:x,y,w,h = cv2.boundingRect(contour) area = w * h center =(x + w / 2,y + h / 2) if(area> 1000)和(area x,y,w,h = x-4,y-4,w + 8,h + 8 bounding_boxes.append y,w,h))) cv2.rectangle(char_mask,(x,y),(x + w,y + h),255,-1) cv2.imwrite ('licence_plate_mask3.png',char_mask) clean = cv2.bitwise_not(cv2.bitwise_and(char_mask,char_mask,mask = bw_image)) bounding_boxes = sorted key = lambda item:item [0] [0]) characters = [] for center,bbox in bounding_boxes:x,y,w,h = bbox char_image = clean [y:y + h,x:x + w] characters.append((bbox,char_image)) return clean,characters def highlight_characters(img,chars): output_img = cv2.cvtColor(img,cv2.COLOR_GRAY2BGR) for bbox,char_img in chars:x,y, h = bbox cv2.rectangle(output_img,(x,y),(x + w,y + h),255,1) return output_img #============================================== ========================== img = cv2.imread(licence_plate.jpg) img = clean_image(img) clean_img,chars = extract_characters(img) output_img = highlight_characters(clean_img,chars) cv2.imwrite('licence_plate_out .png',output_img) samples = np.loadtxt('char_samples.data',np.float32) responses = np.loadtxt('char_responses.data' np.float32) responses = responses.reshape((responses.size,1)) model = cv2.ml.KNearest_create() model.train (samples,cv2.ml.ROW_SAMPLE,responses) plate_chars = for bbox,char_img in chars: small_img = cv2.resize(char_img, ) small_img = small_img.reshape((1,100)) small_img = np.float32(small_img) retval,results,neigh_resp,dists = model.findNearest(small_img,k = 1) plate_chars + = str(chr((results [0] [0]))) print(车牌:%s%plate_chars) 脚本输出 5x: 均分: 缩减为8种颜色: 阈值: 侵蚀: 只选择字元的遮罩: 使用包围框清洁图片: 控制台输出: 车牌号:2B99996 C ++代码,使用OpenCV 2.4.11和Boost.Filesystem迭代目录中的文件。 #include< boost / filesystem.hpp> #include< opencv2 / opencv.hpp> #include< iostream> #include< string> // ========================================== ============================ namespace fs = boost :: filesystem; // ========================================== ============================== typedef std :: vector< std :: string> string_list; struct char_match_t { cv :: Point2i position; cv :: Mat image; }; typedef std :: vector< char_match_t> char_match_list; // -------------------------------------------- -------------------------------- string_list find_input_files(std :: string const& dir) { string_list result; fs :: path dir_path(dir); fs :: directory_iterator end_itr; for(fs :: directory_iterator i(dir_path); i!= end_itr; ++ i){ if(!fs :: is_regular_file(i-> status()))continue; if(i-> path()。extension()==.png){ result.push_back(i-> path } } 返回结果; } // --------------------------------------- ------------------------------------- cv :: Mat reduce_image(cv :: Mat const& img,int K) { int n = img.rows * img.cols; cv :: Mat data = img.reshape(1,n); data.convertTo(data,CV_32F); std :: vector< int>标签; cv :: Mat1f colors; cv :: kmeans(data,K,labels ,cv :: TermCriteria(CV_TERMCRIT_ITER | CV_TERMCRIT_EPS,10000,0.0001),5,cv :: KMEANS_PP_CENTERS,colors); for(int i = 0; i data.at< float>(i, ; } cv :: Mat reduced = data.reshape(1,img.rows); reduced.convertTo(reduced,CV_8U); return reduced; } // --------------------------------------- ------------------------------------- cv :: Mat clean_image(cv :: Mat const& img) { cv :: Mat resized_img; cv :: resize(img,resized_img,cv :: Size(),5.0,5.0,cv :: INTER_CUBIC); cv :: Mat equalized_img; cv :: equalizeHist(resized_img,equalized_img); cv :: Mat reduced_img(reduce_image(equalized_img,8)); cv :: Mat mask; cv :: threshold(reduced_img ,mask ,64 ,255 ,cv :: THRESH_BINARY); cv :: Mat kernel(cv :: getStructuringElement(cv :: MORPH_RECT,cv :: Size(3,3))); cv :: erode(mask,mask,kernel,cv :: Point(-1,-1),1); return mask; } // --------------------------------------- ------------------------------------- cv :: Point2i center(cv :: Rect const& bounding_box) { return cv :: Point2i(bounding_box.x + bounding_box.width / 2 ,bounding_box.y + bounding_box.height / 2) } // --------------------------------------- ------------------------------------- char_match_list extract_characters(cv :: Mat const& img) { cv :: Mat inverse_img; cv :: bitwise_not(img,inverse_img); std :: vector< std :: vector< cv :: Point>>轮廓; std :: vector< cv :: Vec4i>层次; cv :: findContours(inverse_img.clone(),contour,hierarchy,CV_RETR_EXTERNAL,CV_CHAIN_APPROX_NONE); char_match_list result; double const MIN_CONTOUR_AREA(1000.0); double const MAX_CONTOUR_AREA(6000.0); for(uint32_t i(0); i cv :: Rect bounding_box(cv :: boundingRect(contoururs [i])) int bb_area(bounding_box.area()); if((bb_area> = MIN_CONTOUR_AREA)&&(bb_area< = MAX_CONTOUR_AREA)){ int PADDING(2) bounding_box.x - = PADDING; bounding_box.y - = PADDING; bounding_box.width + = PADDING * 2; bounding_box.height + = PADDING * 2; char_match_t match; match.position = center(bounding_box); match.image = img(bounding_box); result.push_back(match); } } std :: sort(begin(result),end(result),[](char_match_t const& a,char_match_t const& b) - > bool { return a.position.x< b.position.x; }); 返回结果; } // --------------------------------------- ------------------------------------- std :: pair< float,cv: :Mat> train_character(char c,cv :: Mat const& img) { cv :: Mat small_char; cv :: resize(img,small_char,cv :: Size(10,10),0,0,cv :: INTER_LINEAR); cv :: Mat small_char_float; small_char.convertTo(small_char_float,CV_32FC1); cv :: Mat small_char_linear(small_char_float.reshape(1,1)); return std :: pair< float,cv :: Mat>( static_cast< float>(c),small_char_linear); } // --------------------------------------- ------------------------------------- std :: string process_image(cv :: Mat const& img,cv :: KNearest& knn) { cv :: Mat clean_img(clean_image(img)); char_match_list characters(extract_characters(clean_img)); std :: string result; for(char_match_t const& match:characters){ cv :: Mat small_char; cv :: resize(match.image,small_char,cv :: Size(10,10),0,0,cv :: INTER_LINEAR); cv :: Mat small_char_float; small_char.convertTo(small_char_float,CV_32FC1); cv :: Mat small_char_linear(small_char_float.reshape(1,1)); float p = knn.find_nearest(small_char_linear,1); result.push_back(char(p)); } 返回结果; } // =================================== =================================== int main() { string_list train_files(find_input_files(./ chars)); cv :: Mat samples,responses; for(std :: string const& file_name:train_files){ cv :: Mat char_img(cv :: imread(file_name,0)); std :: pair< float,cv :: Mat> tinfo(train_character(file_name [file_name.size() - 5],char_img)); responses.push_back(tinfo.first); samples.push_back(tinfo.second); } cv :: KNearest knn; knn.train(samples,responses); string_list input_files(find_input_files(./ input)); for(std :: string const& file_name:input_files){ cv :: Mat plate_img(cv :: imread(file_name,0)); std :: string plate(process_image(plate_img,knn)); std :: cout<< file_name<< :<<板<< \\\; } } // ================================== ======================================== C ++代码,使用OpenCV 3.1和Boost.Filesystem迭代目录中的文件。 #include< boost / filesystem.hpp> #include< opencv2 / opencv.hpp> #include< iostream> #include< string> // ========================================== ============================ namespace fs = boost :: filesystem; // ========================================== ============================== typedef std :: vector< std :: string> string_list; struct char_match_t { cv :: Point2i position; cv :: Mat image; }; typedef std :: vector< char_match_t> char_match_list; // -------------------------------------------- -------------------------------- string_list find_input_files(std :: string const& dir) { string_list result; fs :: path dir_path(dir); boost :: filesystem :: directory_iterator end_itr; for(boost :: filesystem :: directory_iterator i(dir_path); i!= end_itr; ++ i){ if(!boost :: filesystem :: is_regular_file(i-> status ))continue; if(i-> path()。extension()==.png){ result.push_back(i-> path } } 返回结果; } // --------------------------------------- ------------------------------------- cv :: Mat reduce_image(cv :: Mat const& img,int K) { int n = img.rows * img.cols; cv :: Mat data = img.reshape(1,n); data.convertTo(data,CV_32F); std :: vector< int>标签; cv :: Mat1f colors; cv :: kmeans(data,K,labels ,cv :: TermCriteria(CV_TERMCRIT_ITER | CV_TERMCRIT_EPS,10000,0.0001),5,cv :: KMEANS_PP_CENTERS,colors); for(int i = 0; i data.at< float>(i, ; } cv :: Mat reduced = data.reshape(1,img.rows); reduced.convertTo(reduced,CV_8U); return reduced; } // --------------------------------------- ------------------------------------- cv :: Mat clean_image(cv :: Mat const& img) { cv :: Mat resized_img; cv :: resize(img,resized_img,cv :: Size(),5.0,5.0,cv :: INTER_CUBIC); cv :: Mat equalized_img; cv :: equalizeHist(resized_img,equalized_img); cv :: Mat reduced_img(reduce_image(equalized_img,8)); cv :: Mat mask; cv :: threshold(reduced_img ,mask ,64 ,255 ,cv :: THRESH_BINARY); cv :: Mat kernel(cv :: getStructuringElement(cv :: MORPH_RECT,cv :: Size(3,3))); cv :: erode(mask,mask,kernel,cv :: Point(-1,-1),1); return mask; } // --------------------------------------- ------------------------------------- cv :: Point2i center(cv :: Rect const& bounding_box) { return cv :: Point2i(bounding_box.x + bounding_box.width / 2 ,bounding_box.y + bounding_box.height / 2); } // --------------------------------------- ------------------------------------- char_match_list extract_characters(cv :: Mat const& img) { cv :: Mat inverse_img; cv:bitwise_not(img,inverse_img); std :: vector< std :: vector< cv :: Point>>轮廓; std :: vector< cv :: Vec4i>层次; cv :: findContours(inverse_img.clone(),contour,hierarchy,CV_RETR_EXTERNAL,CV_CHAIN_APPROX_NONE); char_match_list result; double const MIN_CONTOUR_AREA(1000.0); double const MAX_CONTOUR_AREA(6000.0); for(int i(0); i cv :: Rect bounding_box(cv :: boundingRect(contoururs [i])); int bb_area(bounding_box.area()); if((bb_area> = MIN_CONTOUR_AREA)&&(bb_area< = MAX_CONTOUR_AREA)){ int PADDING(2) bounding_box.x - = PADDING; bounding_box.y - = PADDING; bounding_box.width + = PADDING * 2; bounding_box.height + = PADDING * 2; char_match_t match; match.position = center(bounding_box); match.image = img(bounding_box); result.push_back(match); } } std :: sort(begin(result),end(result),[](char_match_t const& a,char_match_t const& b) - > bool { return a.position.x< b.position.x; }); 返回结果; } // --------------------------------------- ------------------------------------- std :: pair< float,cv: :Mat> train_character(char c,cv :: Mat const& img) { cv :: Mat small_char; cv :: resize(img,small_char,cv :: Size(10,10),0,0,cv :: INTER_LINEAR); cv :: Mat small_char_float; small_char.convertTo(small_char_float,CV_32FC1); cv :: Mat small_char_linear(small_char_float.reshape(1,1)); return std :: pair< float,cv :: Mat>( static_cast< float>(c),small_char_linear); } // --------------------------------------- ------------------------------------- std :: string process_image(cv :: Mat const& img,cv :: Ptr< cv :: ml :: KNearest> knn) { cv :: Mat clean_img(clean_image(img)); char_match_list characters(extract_characters(clean_img)); std :: string result; for(char_match_t const& match:characters){ cv :: Mat small_char; cv :: resize(match.image,small_char,cv :: Size(10,10),0,0,cv :: INTER_LINEAR); cv :: Mat small_char_float; small_char.convertTo(small_char_float,CV_32FC1); cv :: Mat small_char_linear(small_char_float.reshape(1,1)); cv :: Mat tmp; float p = knn-> findNearest(small_char_linear,1,tmp); result.push_back(char(p)); } 返回结果; } // =================================== =================================== int main() { string_list train_files(find_input_files(./ chars)); cv :: Mat samples,responses; for(std :: string const& file_name:train_files){ cv :: Mat char_img(cv :: imread(file_name,0)); std :: pair< float,cv :: Mat> tinfo(train_character(file_name [file_name.size() - 5],char_img)); responses.push_back(tinfo.first); samples.push_back(tinfo.second); } cv :: Ptr< cv :: ml :: KNearest> knn(cv :: ml :: KNearest :: create()); cv :: Ptr< cv :: ml :: TrainData> training_data = cv :: ml :: TrainData :: create(samples ,cv :: ml :: SampleTypes :: ROW_SAMPLE ,responses); knn-> train(training_data); string_list input_files(find_input_files(./ input)); for(std :: string const& file_name:input_files){ cv :: Mat plate_img(cv :: imread(file_name,0)); std :: string plate(process_image(plate_img,knn)); std :: cout<< file_name<< :<<板<< \\\; } } // ================================== ======================================== I try to recognize the characters of license plates using OCR, but my licence plate have worse quality.I'm trying to somehow improve character recognition for OCR, but my best result is this:result.And even tesseract on this picture does not recognize any character. My code is:#include <cv.h> // open cv general include file#include <highgui.h> // open cv GUI include file#include <iostream> // standard C++ I/O#include <opencv2/highgui/highgui.hpp>#include <opencv2/imgproc/imgproc.hpp>#include <string>using namespace cv;int main( int argc, char** argv ){ Mat src; Mat dst; Mat const structure_elem = getStructuringElement( MORPH_RECT, Size(2,2)); src = imread(argv[1], CV_LOAD_IMAGE_COLOR); // Read the file cvtColor(src,src,CV_BGR2GRAY); imshow( "plate", src ); GaussianBlur(src, src, Size(1,1), 1.5, 1.5); imshow( "blur", src ); equalizeHist(src, src); imshow( "equalize", src ); adaptiveThreshold(src, src, 255, ADAPTIVE_THRESH_GAUSSIAN_C, CV_THRESH_BINARY, 15, -1); imshow( "threshold", src ); morphologyEx(src, src, MORPH_CLOSE, structure_elem); imshow( "morphological operation", src ); imwrite("end.jpg", src); waitKey(0); return 0;}And my question is, do you know how to achieve better results? More clear image? Despite having my licence plate worse quality, so that the result could read OCR (for example Tesseract).Thank you for answers. Really I do not know how to do it. 解决方案 One possible algorithm to clean up the images is as follows:Scale the image up, so that the letters are more substantial.Reduce the image to only 8 colours by k-means clustering.Threshold the image, and erode it to fill in any small gaps and make the letters more substantial.Invert the image to make masking easier.Create a blank mask image of the same size, set to all zerosFind contours in the image. For each contour:Find bounding box of the contourFind the area of the bounding boxIf the area is too small or too large, drop the contour (I chose 1000 and 10000 as limits)Otherwise draw a filled rectangle corresponding to the bounding box on the mask with white colour (255)Store the bounding box and the corresponding image ROIFor each separated character (bounding box + image)Recognise the characterNote: I prototyped this in Python 2.7 with OpenCV 3.1. C++ ports of this code are near the end of this answer.Character RecognitionI took inspiration for the character recognition from this question on SO.Then I found an image that we can use to extract training images for the correct font. I cut them down to only include digits and letters without accents.train_digits.png:train_letters.png:Then i wrote a script that splits the individual characters, scales them up and prepares the training images that contain single character per file:import osimport cv2import numpy as np# ============================================================================def extract_chars(img): bw_image = cv2.bitwise_not(img) contours = cv2.findContours(bw_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[1] char_mask = np.zeros_like(img) bounding_boxes = [] for contour in contours: x,y,w,h = cv2.boundingRect(contour) x,y,w,h = x-2, y-2, w+4, h+4 bounding_boxes.append((x,y,w,h)) characters = [] for bbox in bounding_boxes: x,y,w,h = bbox char_image = img[y:y+h,x:x+w] characters.append(char_image) return characters# ============================================================================def output_chars(chars, labels): for i, char in enumerate(chars): filename = "chars/%s.png" % labels[i] char = cv2.resize(char , None , fx=3 , fy=3 , interpolation=cv2.INTER_CUBIC) cv2.imwrite(filename, char)# ============================================================================if not os.path.exists("chars"): os.makedirs("chars")img_digits = cv2.imread("train_digits.png", 0)img_letters = cv2.imread("train_letters.png", 0)digits = extract_chars(img_digits)letters = extract_chars(img_letters)DIGITS = [0, 9, 8 ,7, 6, 5, 4, 3, 2, 1]LETTERS = [chr(ord('A') + i) for i in range(25,-1,-1)]output_chars(digits, DIGITS)output_chars(letters, LETTERS)# ============================================================================The next step was to generate the training data from the character files we created with the previous script.I followed the algorithm from the answer to the question mentioned above, resizing each character image to 10x10 and using all the pixels as keypoints.I save the training data as char_samples.data and char_responses.dataScript to generate training data:import cv2import numpy as npCHARS = [chr(ord('0') + i) for i in range(10)] + [chr(ord('A') + i) for i in range(26)]# ============================================================================def load_char_images(): characters = {} for char in CHARS: char_img = cv2.imread("chars/%s.png" % char, 0) characters[char] = char_img return characters# ============================================================================characters = load_char_images()samples = np.empty((0,100))for char in CHARS: char_img = characters[char] small_char = cv2.resize(char_img,(10,10)) sample = small_char.reshape((1,100)) samples = np.append(samples,sample,0)responses = np.array([ord(c) for c in CHARS],np.float32)responses = responses.reshape((responses.size,1))np.savetxt('char_samples.data',samples)np.savetxt('char_responses.data',responses)# ============================================================================Once we have the training data created, we can run the main script:import cv2import numpy as np# ============================================================================def reduce_colors(img, n): Z = img.reshape((-1,3)) # convert to np.float32 Z = np.float32(Z) # define criteria, number of clusters(K) and apply kmeans() criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0) K = n ret,label,center=cv2.kmeans(Z,K,None,criteria,10,cv2.KMEANS_RANDOM_CENTERS) # Now convert back into uint8, and make original image center = np.uint8(center) res = center[label.flatten()] res2 = res.reshape((img.shape)) return res2# ============================================================================def clean_image(img): gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) resized_img = cv2.resize(gray_img , None , fx=5.0 , fy=5.0 , interpolation=cv2.INTER_CUBIC) resized_img = cv2.GaussianBlur(resized_img,(5,5),0) cv2.imwrite('licence_plate_large.png', resized_img) equalized_img = cv2.equalizeHist(resized_img) cv2.imwrite('licence_plate_equ.png', equalized_img) reduced = cv2.cvtColor(reduce_colors(cv2.cvtColor(equalized_img, cv2.COLOR_GRAY2BGR), 8), cv2.COLOR_BGR2GRAY) cv2.imwrite('licence_plate_red.png', reduced) ret, mask = cv2.threshold(reduced, 64, 255, cv2.THRESH_BINARY) cv2.imwrite('licence_plate_mask.png', mask) kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) mask = cv2.erode(mask, kernel, iterations = 1) cv2.imwrite('licence_plate_mask2.png', mask) return mask# ============================================================================def extract_characters(img): bw_image = cv2.bitwise_not(img) contours = cv2.findContours(bw_image, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)[1] char_mask = np.zeros_like(img) bounding_boxes = [] for contour in contours: x,y,w,h = cv2.boundingRect(contour) area = w * h center = (x + w/2, y + h/2) if (area > 1000) and (area < 10000): x,y,w,h = x-4, y-4, w+8, h+8 bounding_boxes.append((center, (x,y,w,h))) cv2.rectangle(char_mask,(x,y),(x+w,y+h),255,-1) cv2.imwrite('licence_plate_mask3.png', char_mask) clean = cv2.bitwise_not(cv2.bitwise_and(char_mask, char_mask, mask = bw_image)) bounding_boxes = sorted(bounding_boxes, key=lambda item: item[0][0]) characters = [] for center, bbox in bounding_boxes: x,y,w,h = bbox char_image = clean[y:y+h,x:x+w] characters.append((bbox, char_image)) return clean, charactersdef highlight_characters(img, chars): output_img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for bbox, char_img in chars: x,y,w,h = bbox cv2.rectangle(output_img,(x,y),(x+w,y+h),255,1) return output_img# ============================================================================img = cv2.imread("licence_plate.jpg")img = clean_image(img)clean_img, chars = extract_characters(img)output_img = highlight_characters(clean_img, chars)cv2.imwrite('licence_plate_out.png', output_img)samples = np.loadtxt('char_samples.data',np.float32)responses = np.loadtxt('char_responses.data',np.float32)responses = responses.reshape((responses.size,1))model = cv2.ml.KNearest_create()model.train(samples, cv2.ml.ROW_SAMPLE, responses)plate_chars = ""for bbox, char_img in chars: small_img = cv2.resize(char_img,(10,10)) small_img = small_img.reshape((1,100)) small_img = np.float32(small_img) retval, results, neigh_resp, dists = model.findNearest(small_img, k = 1) plate_chars += str(chr((results[0][0])))print("Licence plate: %s" % plate_chars)Script OutputEnlarged 5x:Equalized:Reduced to 8 colours:Thresholded:Eroded:Mask selecting only characters:Clean image with bounding boxes:Console output:Licence plate: 2B99996C++ code, using OpenCV 2.4.11 and Boost.Filesystem to iterate over files in a directory.#include <boost/filesystem.hpp>#include <opencv2/opencv.hpp>#include <iostream>#include <string>// ============================================================================namespace fs = boost::filesystem;// ============================================================================typedef std::vector<std::string> string_list;struct char_match_t{ cv::Point2i position; cv::Mat image;};typedef std::vector<char_match_t> char_match_list;// ----------------------------------------------------------------------------string_list find_input_files(std::string const& dir){ string_list result; fs::path dir_path(dir); fs::directory_iterator end_itr; for (fs::directory_iterator i(dir_path); i != end_itr; ++i) { if (!fs::is_regular_file(i->status())) continue; if (i->path().extension() == ".png") { result.push_back(i->path().string()); } } return result;}// ----------------------------------------------------------------------------cv::Mat reduce_image(cv::Mat const& img, int K){ int n = img.rows * img.cols; cv::Mat data = img.reshape(1, n); data.convertTo(data, CV_32F); std::vector<int> labels; cv::Mat1f colors; cv::kmeans(data, K, labels , cv::TermCriteria(CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 10000, 0.0001) , 5, cv::KMEANS_PP_CENTERS, colors); for (int i = 0; i < n; ++i) { data.at<float>(i, 0) = colors(labels[i], 0); } cv::Mat reduced = data.reshape(1, img.rows); reduced.convertTo(reduced, CV_8U); return reduced;}// ----------------------------------------------------------------------------cv::Mat clean_image(cv::Mat const& img){ cv::Mat resized_img; cv::resize(img, resized_img, cv::Size(), 5.0, 5.0, cv::INTER_CUBIC); cv::Mat equalized_img; cv::equalizeHist(resized_img, equalized_img); cv::Mat reduced_img(reduce_image(equalized_img, 8)); cv::Mat mask; cv::threshold(reduced_img , mask , 64 , 255 , cv::THRESH_BINARY); cv::Mat kernel(cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3))); cv::erode(mask, mask, kernel, cv::Point(-1, -1), 1); return mask;}// ----------------------------------------------------------------------------cv::Point2i center(cv::Rect const& bounding_box){ return cv::Point2i(bounding_box.x + bounding_box.width / 2 , bounding_box.y + bounding_box.height / 2);}// ----------------------------------------------------------------------------char_match_list extract_characters(cv::Mat const& img){ cv::Mat inverse_img; cv::bitwise_not(img, inverse_img); std::vector<std::vector<cv::Point>> contours; std::vector<cv::Vec4i> hierarchy; cv::findContours(inverse_img.clone(), contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE); char_match_list result; double const MIN_CONTOUR_AREA(1000.0); double const MAX_CONTOUR_AREA(6000.0); for (uint32_t i(0); i < contours.size(); ++i) { cv::Rect bounding_box(cv::boundingRect(contours[i])); int bb_area(bounding_box.area()); if ((bb_area >= MIN_CONTOUR_AREA) && (bb_area <= MAX_CONTOUR_AREA)) { int PADDING(2); bounding_box.x -= PADDING; bounding_box.y -= PADDING; bounding_box.width += PADDING * 2; bounding_box.height += PADDING * 2; char_match_t match; match.position = center(bounding_box); match.image = img(bounding_box); result.push_back(match); } } std::sort(begin(result), end(result) , [](char_match_t const& a, char_match_t const& b) -> bool { return a.position.x < b.position.x; }); return result;}// ----------------------------------------------------------------------------std::pair<float, cv::Mat> train_character(char c, cv::Mat const& img){ cv::Mat small_char; cv::resize(img, small_char, cv::Size(10, 10), 0, 0, cv::INTER_LINEAR); cv::Mat small_char_float; small_char.convertTo(small_char_float, CV_32FC1); cv::Mat small_char_linear(small_char_float.reshape(1, 1)); return std::pair<float, cv::Mat>( static_cast<float>(c) , small_char_linear);}// ----------------------------------------------------------------------------std::string process_image(cv::Mat const& img, cv::KNearest& knn){ cv::Mat clean_img(clean_image(img)); char_match_list characters(extract_characters(clean_img)); std::string result; for (char_match_t const& match : characters) { cv::Mat small_char; cv::resize(match.image, small_char, cv::Size(10, 10), 0, 0, cv::INTER_LINEAR); cv::Mat small_char_float; small_char.convertTo(small_char_float, CV_32FC1); cv::Mat small_char_linear(small_char_float.reshape(1, 1)); float p = knn.find_nearest(small_char_linear, 1); result.push_back(char(p)); } return result;}// ============================================================================int main(){ string_list train_files(find_input_files("./chars")); cv::Mat samples, responses; for (std::string const& file_name : train_files) { cv::Mat char_img(cv::imread(file_name, 0)); std::pair<float, cv::Mat> tinfo(train_character(file_name[file_name.size() - 5], char_img)); responses.push_back(tinfo.first); samples.push_back(tinfo.second); } cv::KNearest knn; knn.train(samples, responses); string_list input_files(find_input_files("./input")); for (std::string const& file_name : input_files) { cv::Mat plate_img(cv::imread(file_name, 0)); std::string plate(process_image(plate_img, knn)); std::cout << file_name << " : " << plate << "\n"; }}// ============================================================================C++ code, using OpenCV 3.1 and Boost.Filesystem to iterate over files in a directory.#include <boost/filesystem.hpp>#include <opencv2/opencv.hpp>#include <iostream>#include <string>// ============================================================================namespace fs = boost::filesystem;// ============================================================================typedef std::vector<std::string> string_list;struct char_match_t{ cv::Point2i position; cv::Mat image;};typedef std::vector<char_match_t> char_match_list;// ----------------------------------------------------------------------------string_list find_input_files(std::string const& dir){ string_list result; fs::path dir_path(dir); boost::filesystem::directory_iterator end_itr; for (boost::filesystem::directory_iterator i(dir_path); i != end_itr; ++i) { if (!boost::filesystem::is_regular_file(i->status())) continue; if (i->path().extension() == ".png") { result.push_back(i->path().string()); } } return result;}// ----------------------------------------------------------------------------cv::Mat reduce_image(cv::Mat const& img, int K){ int n = img.rows * img.cols; cv::Mat data = img.reshape(1, n); data.convertTo(data, CV_32F); std::vector<int> labels; cv::Mat1f colors; cv::kmeans(data, K, labels , cv::TermCriteria(CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 10000, 0.0001) , 5, cv::KMEANS_PP_CENTERS, colors); for (int i = 0; i < n; ++i) { data.at<float>(i, 0) = colors(labels[i], 0); } cv::Mat reduced = data.reshape(1, img.rows); reduced.convertTo(reduced, CV_8U); return reduced;}// ----------------------------------------------------------------------------cv::Mat clean_image(cv::Mat const& img){ cv::Mat resized_img; cv::resize(img, resized_img, cv::Size(), 5.0, 5.0, cv::INTER_CUBIC); cv::Mat equalized_img; cv::equalizeHist(resized_img, equalized_img); cv::Mat reduced_img(reduce_image(equalized_img, 8)); cv::Mat mask; cv::threshold(reduced_img , mask , 64 , 255 , cv::THRESH_BINARY); cv::Mat kernel(cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3))); cv::erode(mask, mask, kernel, cv::Point(-1, -1), 1); return mask;}// ----------------------------------------------------------------------------cv::Point2i center(cv::Rect const& bounding_box){ return cv::Point2i(bounding_box.x + bounding_box.width / 2 , bounding_box.y + bounding_box.height / 2);}// ----------------------------------------------------------------------------char_match_list extract_characters(cv::Mat const& img){ cv::Mat inverse_img; cv::bitwise_not(img, inverse_img); std::vector<std::vector<cv::Point>> contours; std::vector<cv::Vec4i> hierarchy; cv::findContours(inverse_img.clone(), contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE); char_match_list result; double const MIN_CONTOUR_AREA(1000.0); double const MAX_CONTOUR_AREA(6000.0); for (int i(0); i < contours.size(); ++i) { cv::Rect bounding_box(cv::boundingRect(contours[i])); int bb_area(bounding_box.area()); if ((bb_area >= MIN_CONTOUR_AREA) && (bb_area <= MAX_CONTOUR_AREA)) { int PADDING(2); bounding_box.x -= PADDING; bounding_box.y -= PADDING; bounding_box.width += PADDING * 2; bounding_box.height += PADDING * 2; char_match_t match; match.position = center(bounding_box); match.image = img(bounding_box); result.push_back(match); } } std::sort(begin(result), end(result) , [](char_match_t const& a, char_match_t const& b) -> bool { return a.position.x < b.position.x; }); return result;}// ----------------------------------------------------------------------------std::pair<float, cv::Mat> train_character(char c, cv::Mat const& img){ cv::Mat small_char; cv::resize(img, small_char, cv::Size(10, 10), 0, 0, cv::INTER_LINEAR); cv::Mat small_char_float; small_char.convertTo(small_char_float, CV_32FC1); cv::Mat small_char_linear(small_char_float.reshape(1, 1)); return std::pair<float, cv::Mat>( static_cast<float>(c) , small_char_linear);}// ----------------------------------------------------------------------------std::string process_image(cv::Mat const& img, cv::Ptr<cv::ml::KNearest> knn){ cv::Mat clean_img(clean_image(img)); char_match_list characters(extract_characters(clean_img)); std::string result; for (char_match_t const& match : characters) { cv::Mat small_char; cv::resize(match.image, small_char, cv::Size(10, 10), 0, 0, cv::INTER_LINEAR); cv::Mat small_char_float; small_char.convertTo(small_char_float, CV_32FC1); cv::Mat small_char_linear(small_char_float.reshape(1, 1)); cv::Mat tmp; float p = knn->findNearest(small_char_linear, 1, tmp); result.push_back(char(p)); } return result;}// ============================================================================int main(){ string_list train_files(find_input_files("./chars")); cv::Mat samples, responses; for (std::string const& file_name : train_files) { cv::Mat char_img(cv::imread(file_name, 0)); std::pair<float, cv::Mat> tinfo(train_character(file_name[file_name.size() - 5], char_img)); responses.push_back(tinfo.first); samples.push_back(tinfo.second); } cv::Ptr<cv::ml::KNearest> knn(cv::ml::KNearest::create()); cv::Ptr<cv::ml::TrainData> training_data = cv::ml::TrainData::create(samples , cv::ml::SampleTypes::ROW_SAMPLE , responses); knn->train(training_data); string_list input_files(find_input_files("./input")); for (std::string const& file_name : input_files) { cv::Mat plate_img(cv::imread(file_name, 0)); std::string plate(process_image(plate_img, knn)); std::cout << file_name << " : " << plate << "\n"; }}// ============================================================================ 这篇关于识别车牌的字符的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持! 上岸,阿里云! 07-22 17:03