nCV的SiftDescriptorExtractor转换描述符

nCV的SiftDescriptorExtractor转换描述符

本文介绍了如何从OpenCV的SiftDescriptorExtractor转换描述符值?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧! 问题描述 29岁程序员,3月因学历无情被辞! 我有一个关于SiftDescriptorExtractor作业最后一部分的问题, 我正在做以下操作: SiftDescriptorExtractor extractor; Mat descriptors_object; extractor.compute(img_object,keypoints_object,descriptors_object); 现在我想检查一个descriptors_object对象的元素: std :: cout< descriptors_object.row(1)<< std :: endl; 输出如下所示: [0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0, 51,154,20,0,0,0,0,0,154,154,1,2,1,0,0,05,1,48,18,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 2,154,61,0,0,0,0,5,60,154,30,0,0,0,0,34,70,6,15,3,2,1,0,14,16,18,19,20,21,22,23,24,25,26, 2,0,0,0,0,05,04,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 6,1,0,1,0,0,0] 但在 Lowe纸说:因此,来自特征向量的数字应不大于0.2的值。 问题是,如何在Mat对象中转换这些值? p> 解决方案 否。该论文说SIFT描述符是: 规范化(使用L2范数) code> 0.2 作为阈值(即循环正常化值并在适当时截断) 再次规范 因此,在理论上,任何SIFT描述符组件都在 [0,1] 之间,问题是,这些值是如何在Mat对象中转换的? $ b() 将它们从浮点值转换为 unsigned char -s。 这里是来自OpenCV的相关部分 modules / nonfree / src / sift.cpp calcSIFTDescriptor 方法: float nrm2 = 0; len = d * d * n; for(k = 0; k nrm2 + = dst [k] * dst [k] float thr = std :: sqrt(nrm2)* SIFT_DESCR_MAG_THR; for(i = 0,nrm2 = 0; i { float val = std :: min(dst [i],thr) dst [i] = val; nrm2 + = val * val; } nrm2 = SIFT_INT_DESCR_FCTR / std :: max(std :: sqrt(nrm2),FLT_EPSILON); for(k = 0; k { dst [k] = saturate_cast< uchar>(dst [k] * nrm2) } 具有: static const float SIFT_INT_DESCR_FCTR = 512.f;这是因为经典的SIFT实现将归一化的浮点值量化为 unsigned char()。 整数乘以512乘法因子,这等效于考虑任何SIFT分量在 [0,1 / 2] 之间变化,松散精度试图编码完整的 [0,1] 范围。 I have a question about the last part of the SiftDescriptorExtractor job,I'm doing the following: SiftDescriptorExtractor extractor; Mat descriptors_object; extractor.compute( img_object, keypoints_object, descriptors_object );Now I want to check the elements of a descriptors_object Mat object:std::cout<< descriptors_object.row(1) << std::endl;output looks like:[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 32, 15, 0, 0, 0, 0, 0, 0, 73, 33, 11, 0, 0, 0, 0, 0, 0, 5, 114, 1, 0, 0, 0, 0, 51, 154, 20, 0, 0, 0, 0, 0, 154, 154, 1, 2, 1, 0, 0, 0, 154, 148, 18, 1, 0, 0, 0, 0, 0, 2, 154, 61, 0, 0, 0, 0, 5, 60, 154, 30, 0, 0, 0, 0, 34, 70, 6, 15, 3, 2, 1, 0, 14, 16, 2, 0, 0, 0, 0, 0, 0, 0, 154, 84, 0, 0, 0, 0, 0, 0, 154, 64, 0, 0, 0, 0, 0, 0, 6, 6, 1, 0, 1, 0, 0, 0]But in Lowe paper it is stated that:So the numbers from the feature vector should be no larger than 0.2 value.The question is, how these values have been converted in a Mat object? 解决方案 No. The paper says that SIFT descriptors are:normalized (with L2 norm)truncated using 0.2 as a threshold (i.e. loop over the normalized values and truncate when appropriate)normalized againSo in theory any SIFT descriptor component is between [0, 1], even though in practice the effective range observed is smaller (see below).They are converted from floating-point values to unsigned char-s.Here's the related section from OpenCV modules/nonfree/src/sift.cpp calcSIFTDescriptor method:float nrm2 = 0;len = d*d*n;for( k = 0; k < len; k++ ) nrm2 += dst[k]*dst[k];float thr = std::sqrt(nrm2)*SIFT_DESCR_MAG_THR;for( i = 0, nrm2 = 0; i < k; i++ ){ float val = std::min(dst[i], thr); dst[i] = val; nrm2 += val*val;}nrm2 = SIFT_INT_DESCR_FCTR/std::max(std::sqrt(nrm2), FLT_EPSILON);for( k = 0; k < len; k++ ){ dst[k] = saturate_cast<uchar>(dst[k]*nrm2);}With:static const float SIFT_INT_DESCR_FCTR = 512.f;This is because classical SIFT implementations quantize the normalized floating point values into unsigned char integer through a 512 multiplying factor, which is equivalent to consider that any SIFT component varies between [0, 1/2], and thus avoid to loose precision trying to encode the full [0, 1] range. 这篇关于如何从OpenCV的SiftDescriptorExtractor转换描述符值?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持! 上岸,阿里云!
07-22 16:58