问题描述
如何使用带有 tf.feature_column.embedding_column
的预训练嵌入.
我在 tf.feature_column.embedding_column
中使用了 pre_trained
嵌入.但它不起作用.错误是
错误是:
ValueError:如果指定,初始化程序必须是可调用的.column_name 的嵌入:itemx
这是我的代码:
weight, vocab_size, emb_size = _create_pretrained_emb_from_txt(FLAGS.vocab,FLAGS.pre_emb)W = tf.Variable(tf.constant(0.0, shape=[vocab_size, emb_size]),可训练=假,名称=W")embedding_placeholder = tf.placeholder(tf.float32, [vocab_size, emb_size])embedding_init = W.assign(embedding_placeholder)sess = tf.Session()sess.run(embedding_init, feed_dict={embedding_placeholder: weight})itemx_vocab = tf.feature_column.categorical_column_with_vocabulary_file(键='itemx',词汇文件=标志.vocabx)itemx_emb = tf.feature_column.embedding_column(itemx_vocab,尺寸=emb_size,初始值设定项=W,可训练=假)
我试过初始化器 = lambda w:W.像这样:
itemx_emb = tf.feature_column.embedding_column(itemx_vocab,尺寸=emb_size,初始值设定项 = lambda w:W,可训练=假)
它报告错误:
TypeError: () 得到了一个意外的关键字参数 'dtype'
我也在这里提出一个问题 https://github.com/tensorflow/tensorflow/issues/20663
最后我找到了解决它的正确方法.虽然.我不清楚为什么上面的答案无效!!如果你知道这个问题,谢谢你给我一些建议!!
好的~~~~这是当前的解决方案.实际上从这里Feature Columns Embedding lookup
代码:
itemx_vocab = tf.feature_column.categorical_column_with_vocabulary_file(键='itemx',词汇文件=标志.vocabx)embedding_initializer_x = tf.contrib.framework.load_embedding_initializer(ckpt_path='model.ckpt',embedding_tensor_name='w_in',new_vocab_size=itemx_vocab.vocabulary_size,embedding_dim=emb_size,old_vocab_file='FLAGS.vocab_emb',new_vocab_file=标志.vocabx)itemx_emb = tf.feature_column.embedding_column(itemx_vocab,维度=128,初始值设定项=嵌入_初始值设定项_x,可训练=假)
How to use pre-trained embedding with tf.feature_column.embedding_column
.
I used pre_trained
embedding in tf.feature_column.embedding_column
. But it doesn't work. Error is
ValueError: initializer must be callable if specified. Embedding of column_name: itemx
weight, vocab_size, emb_size = _create_pretrained_emb_from_txt(FLAGS.vocab,
FLAGS.pre_emb)
W = tf.Variable(tf.constant(0.0, shape=[vocab_size, emb_size]),
trainable=False, name="W")
embedding_placeholder = tf.placeholder(tf.float32, [vocab_size, emb_size])
embedding_init = W.assign(embedding_placeholder)
sess = tf.Session()
sess.run(embedding_init, feed_dict={embedding_placeholder: weight})
itemx_vocab = tf.feature_column.categorical_column_with_vocabulary_file(
key='itemx',
vocabulary_file=FLAGS.vocabx)
itemx_emb = tf.feature_column.embedding_column(itemx_vocab,
dimension=emb_size,
initializer=W,
trainable=False)
I have tried initializer = lambda w:W. like this:
itemx_emb = tf.feature_column.embedding_column(itemx_vocab,
dimension=emb_size,
initializer=lambda w:W,
trainable=False)
TypeError: () got an unexpected keyword argument 'dtype'
I also take a issue here https://github.com/tensorflow/tensorflow/issues/20663
finally I got a right way with to solve it. although. i'm not clear why answer above is not effective!! if you know the question, Thanks to give some suggestion to me!!
ok~~~~here is current solvement. Actually from here Feature Columns Embedding lookup
itemx_vocab = tf.feature_column.categorical_column_with_vocabulary_file(
key='itemx',
vocabulary_file=FLAGS.vocabx)
embedding_initializer_x = tf.contrib.framework.load_embedding_initializer(
ckpt_path='model.ckpt',
embedding_tensor_name='w_in',
new_vocab_size=itemx_vocab.vocabulary_size,
embedding_dim=emb_size,
old_vocab_file='FLAGS.vocab_emb',
new_vocab_file=FLAGS.vocabx
)
itemx_emb = tf.feature_column.embedding_column(itemx_vocab,
dimension=128,
initializer=embedding_initializer_x,
trainable=False)
这篇关于特征列预训练嵌入的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!