问题描述
我正在使用 Tensorflow 对象检测 API 训练我自己的数据集.在训练时,我只得到损失值像这样.有没有办法在训练时或在张量板上获得 mAP 值?
I am training my own dataset using Tensorflow Object Detection API. While training, I only get loss value like this. Is there any way to get mAP value while training or on tensorboard ?
推荐答案
在 legacy/train.py 和 legacy/eval.py
in the legacy/train.py and legacy/eval.py
Example usage:
./train \
--logtostderr \
--train_dir=path/to/train_dir \
--pipeline_config_path=pipeline_config.pbtxt
Example usage:
./eval \
--logtostderr \
--checkpoint_dir=path/to/checkpoint_dir \
--eval_dir=path/to/eval_dir \
--pipeline_config_path=pipeline_config_path.pbtxt \
对于一个终端,您使用 train.py 进行训练,
for one terminal you use train.py to train ,
对于另一个终端,您使用 eval.py 来评估,
for another terminal you use eval.py to evaluate ,
确保 train_dir 与 checkpoint_dir 和 eval_dir
另一个终端打开tensorboard
and the other terminal open up tensorboard
确保你安排好你的硬件设备,否则你可能无法同时打开train和eval
make sure u arrange ur hardware device, otherwise u might not able open both train and eval in the same time
这篇关于Tensorflow 对象检测 API 仅显示损失值.如何获得mAP值?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!