问题描述
当前情况:
我有多组线,其中同一组中的线根据某些特定于组的参数而变化.我根据此参数为每个组使用不同的颜色图,根据该参数为同一组中的每条线分配颜色图中的颜色.
现在,我想在图上添加图例,每组线有一个条目. 仅一组行的解决方案:
如果我只有一组线,则最好的标记方法是按照答案中的建议添加色条: Matplotlib :将颜色条添加到不可映射的对象.
如何最好地对多组线执行此操作?
由于我有多组这样的线,所以我不想为每个新参数添加一个颜色条.相反,我宁愿在图例中放置填充有对应色图的色块(作为一种迷你色条).
最低工作示例:
在下面,您可以找到有关当前情况的最小工作示例.不过请注意,我在很大程度上简化了隐藏参数依赖性的行的计算.因此,这里的参数" param
只是我要遍历的索引.我的实际代码根据具有更复杂功能的模型参数来计算x和y值.因此,每组线的最大param_max
相同,尽管实际上并非如此.
import numpy as np
import matplotlib.pyplot as plt
x_array = np.linspace(1, 10, 10)
y_array = x_array
param_max = x_array.size
cmaps = [plt.cm.spring, plt.cm.winter] # set of colormaps
# (as many as there are groups of lines)
plt.figure()
for param, (x, y) in enumerate(zip(x_array, y_array)):
x_line1 = np.linspace(x, 1.5 * x, 10)
y_line1 = np.linspace(y**2, y**2 - x, 10)
x_line2 = np.linspace(1.2 * x, 1.5 * x, 10)
y_line2 = np.linspace(2 * y, 2 * y - x, 10)
# plot lines with color depending on param using different colormaps:
plt.plot(x_line1, y_line1, c=cmaps[0](param / param_max))
plt.plot(x_line2, y_line2, c=cmaps[1](param / param_max))
plt.show()
这将产生上面显示的图.
由于找不到任何直接在stackoverflow上回答此问题的东西,因此我尝试自己找到一种解决方案,您可以在答案部分中找到该解决方案.如果有更直接/合适的方法,我将很高兴知道.
我将ImportanceOfBeingErnest的答案的解决方案修改为在这种情况下,matplotlib会为图形图例添加双色矩形矩形.如此处所链接,在实现自定义图例的部分中的说明 matplotlib图例指南中的处理程序特别有用.
结果:
解决方案:
我为传奇处理程序创建了从matplotlib的基类派生的类HandlerColormap
HandlerBase
. HandlerColormap
将颜色图和许多条纹作为参数.
对于参数cmap
,应使用matplotlib colormap 实例被给予.
参数num_stripes
确定图例补丁中颜色渐变的(非)连续性.
按照HandlerBase
中的指示,我使用给定的尺寸覆盖了它的create_artist
方法,因此应按字体大小自动(自动)缩放代码.在这个新的create_artist
方法中,我创建了多个条纹(细长的matplotlib Rectangles
)根据输入的颜色图着色.
代码:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
from matplotlib.legend_handler import HandlerBase
class HandlerColormap(HandlerBase):
def __init__(self, cmap, num_stripes=8, **kw):
HandlerBase.__init__(self, **kw)
self.cmap = cmap
self.num_stripes = num_stripes
def create_artists(self, legend, orig_handle,
xdescent, ydescent, width, height, fontsize, trans):
stripes = []
for i in range(self.num_stripes):
s = Rectangle([xdescent + i * width / self.num_stripes, ydescent],
width / self.num_stripes,
height,
fc=self.cmap((2 * i + 1) / (2 * self.num_stripes)),
transform=trans)
stripes.append(s)
return stripes
x_array = np.linspace(1, 10, 10)
y_array = x_array
param_max = x_array.size
cmaps = [plt.cm.spring, plt.cm.winter] # set of colormaps
# (as many as there are groups of lines)
plt.figure()
for param, (x, y) in enumerate(zip(x_array, y_array)):
x_line1 = np.linspace(x, 1.5 * x, 10)
y_line1 = np.linspace(y**2, y**2 - x, 10)
x_line2 = np.linspace(1.2 * x, 1.5 * x, 10)
y_line2 = np.linspace(2 * y, 2 * y - x, 10)
# plot lines with color depending on param using different colormaps:
plt.plot(x_line1, y_line1, c=cmaps[0](param / param_max))
plt.plot(x_line2, y_line2, c=cmaps[1](param / param_max))
cmap_labels = ["parameter 1 $\in$ [0, 10]", "parameter 2 $\in$ [-1, 1]"]
# create proxy artists as handles:
cmap_handles = [Rectangle((0, 0), 1, 1) for _ in cmaps]
handler_map = dict(zip(cmap_handles,
[HandlerColormap(cm, num_stripes=8) for cm in cmaps]))
plt.legend(handles=cmap_handles,
labels=cmap_labels,
handler_map=handler_map,
fontsize=12)
plt.show()
Situation at hand:
I have multiple groups of lines, where the lines within the same group vary according to some group specific parameter. I assign each of these lines within the same group a color from a colormap according to this parameter using a different colormap for each group.
Now, I would like to add a legend to the plot with one entry per group of lines.
Solution for only one set of lines:
If I had only one group of lines the best way of labelling would be to add a colorbar as suggested in the answer to: Matplotlib: Add colorbar to non-mappable object.
How best to do this for multiple sets of lines?
As I have multiple such groups of lines, I do not want to add a colorbar for each new parameter. Instead, I would rather put patches filled with the corresponding colormaps in the legend (as a sort of mini colorbar).
Minimal working example:
In the following you can find a minimal working example of the situation at hand. Note, though, that I heavily simplified the calculation of the lines which hides the parameter dependence. Thus, my "parameter" param
here is just the index I am iterating over. My actual code calculates the x and y values depending on a model parameter with more complicated functions. Accordingly the maximum param_max
here is the same for each group of lines, though actually it would not be.
import numpy as np
import matplotlib.pyplot as plt
x_array = np.linspace(1, 10, 10)
y_array = x_array
param_max = x_array.size
cmaps = [plt.cm.spring, plt.cm.winter] # set of colormaps
# (as many as there are groups of lines)
plt.figure()
for param, (x, y) in enumerate(zip(x_array, y_array)):
x_line1 = np.linspace(x, 1.5 * x, 10)
y_line1 = np.linspace(y**2, y**2 - x, 10)
x_line2 = np.linspace(1.2 * x, 1.5 * x, 10)
y_line2 = np.linspace(2 * y, 2 * y - x, 10)
# plot lines with color depending on param using different colormaps:
plt.plot(x_line1, y_line1, c=cmaps[0](param / param_max))
plt.plot(x_line2, y_line2, c=cmaps[1](param / param_max))
plt.show()
This produces the plot shown above.
Since I could not find anything directly answering this on stackoverflow, I tried finding a solution myself which you can find in the answers section. If there is a more direct/proper way of doing this I would be happy to know.
I adapted the solution of the answer by ImportanceOfBeingErnest to "Create a matplotlib mpatches with a rectangle bi-colored for figure legend" to this case. As linked there, the instructions in the section on Implementing a custom legend handler in the matplotlib legend guide were particularly helpful.
Result:
Solution:
I created the class HandlerColormap
derived from matplotlib's base class for legend handlers HandlerBase
. HandlerColormap
takes a colormap and a number of stripes as arguments.
For the argument cmap
a matplotlib colormap instance should be given.
The argument num_stripes
determines how (non-)continuous the color gradient in the legend patch will be.
As instructed in HandlerBase
I override its create_artist
method using the given dimension such that the code should be (automatically) scaled by fontsize. In this new create_artist
method I create multiple stripes (slim matplotlib Rectangles
) colored according to the input colormap.
Code:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
from matplotlib.legend_handler import HandlerBase
class HandlerColormap(HandlerBase):
def __init__(self, cmap, num_stripes=8, **kw):
HandlerBase.__init__(self, **kw)
self.cmap = cmap
self.num_stripes = num_stripes
def create_artists(self, legend, orig_handle,
xdescent, ydescent, width, height, fontsize, trans):
stripes = []
for i in range(self.num_stripes):
s = Rectangle([xdescent + i * width / self.num_stripes, ydescent],
width / self.num_stripes,
height,
fc=self.cmap((2 * i + 1) / (2 * self.num_stripes)),
transform=trans)
stripes.append(s)
return stripes
x_array = np.linspace(1, 10, 10)
y_array = x_array
param_max = x_array.size
cmaps = [plt.cm.spring, plt.cm.winter] # set of colormaps
# (as many as there are groups of lines)
plt.figure()
for param, (x, y) in enumerate(zip(x_array, y_array)):
x_line1 = np.linspace(x, 1.5 * x, 10)
y_line1 = np.linspace(y**2, y**2 - x, 10)
x_line2 = np.linspace(1.2 * x, 1.5 * x, 10)
y_line2 = np.linspace(2 * y, 2 * y - x, 10)
# plot lines with color depending on param using different colormaps:
plt.plot(x_line1, y_line1, c=cmaps[0](param / param_max))
plt.plot(x_line2, y_line2, c=cmaps[1](param / param_max))
cmap_labels = ["parameter 1 $\in$ [0, 10]", "parameter 2 $\in$ [-1, 1]"]
# create proxy artists as handles:
cmap_handles = [Rectangle((0, 0), 1, 1) for _ in cmaps]
handler_map = dict(zip(cmap_handles,
[HandlerColormap(cm, num_stripes=8) for cm in cmaps]))
plt.legend(handles=cmap_handles,
labels=cmap_labels,
handler_map=handler_map,
fontsize=12)
plt.show()
这篇关于如何在matplotlib图例中放置多个颜色图补丁?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!