问题描述
我正在尝试使用glm在我的逻辑回归模型的训练数据上找到AUC
I am trying to find AUC on a training data for my logistic regression model using glm
我将数据拆分为训练和测试集,使用glm拟合了logistic回归模型回归模型,计算了预测值并试图找到AUC
I split data to train and test set, fitted a logistic regression model regression model using glm, computed predicted value and trying to find AUC
d<-read.csv(file.choose(), header=T)
set.seed(12345)
train = runif(nrow(d))<.5
table(train)
fit = glm(y~ ., binomial, d)
phat<-predict(fit,type = 'response')
d$phat=phat
g <- roc(y ~ phat, data = d, print.auc=T)
plot(g)
推荐答案
另一个易于使用的选项是使用 caret
库,这使得在以下位置拟合和比较回归/分类模型非常简单R.以下示例代码使用 GermanCredit
数据集,通过Logistic回归模型预测信用度.该代码改编自以下博客: https://www.r-bloggers.com/evaluating-logistic-regression-models/.
Another user-friendly option is to use the caret
library, which makes it pretty straightforward to fit and compare regression/classification models in R. The following example code uses the GermanCredit
dataset to predict credit worthiness using a logistic regression model. The code is adapted from this blog: https://www.r-bloggers.com/evaluating-logistic-regression-models/.
library(caret)
## example from https://www.r-bloggers.com/evaluating-logistic-regression-models/
data(GermanCredit)
## 60% training / 40% test data
trainIndex <- createDataPartition(GermanCredit$Class, p = 0.6, list = FALSE)
GermanCreditTrain <- GermanCredit[trainIndex, ]
GermanCreditTest <- GermanCredit[-trainIndex, ]
## logistic regression based on 10-fold cross-validation
trainControl <- trainControl(
method = "cv",
number = 10,
classProbs = TRUE,
summaryFunction = twoClassSummary
)
fit <- train(
form = Class ~ Age + ForeignWorker + Property.RealEstate + Housing.Own +
CreditHistory.Critical,
data = GermanCreditTrain,
trControl = trainControl,
method = "glm",
family = "binomial",
metric = "ROC"
)
## AUC ROC for training data
print(fit)
## AUC ROC for test data
## See https://topepo.github.io/caret/measuring-performance.html#measures-for-class-probabilities
predictTest <- data.frame(
obs = GermanCreditTest$Class, ## observed class labels
predict(fit, newdata = GermanCreditTest, type = "prob"), ## predicted class probabilities
pred = predict(fit, newdata = GermanCreditTest, type = "raw") ## predicted class labels
)
twoClassSummary(data = predictTest, lev = levels(predictTest$obs))
这篇关于在R中为glm函数计算训练数据集的AUC的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!