问题描述
我已经使用Bokeh成功绘制了多个数据集并拟合了函数,但是我确实需要在图形中添加误差线,我该怎么做?
I have successfully plotted several data sets and fitted functions using Bokeh however I really need to add error bars to the graphs, how might I go about doing this?
推荐答案
现在,它已内置到Bokeh中,请参阅文档:
This is now built into Bokeh, see the documentation:
https://docs.bokeh.org/en /latest/docs/user_guide/annotations.html#whiskers
和
https://docs.bokeh.org/en /latest/docs/user_guide/annotations.html#bands
有关完整示例,请参见 https://stackoverflow.com/a/46517148/3406693 .
See https://stackoverflow.com/a/46517148/3406693 for a complete example.
也许有点晚了,但我今天也想这样做.
Maybe its a little late but I wanted to do this today too.
可惜的是bokeh本身不提供此功能.
It's a shame that bokeh does not offer this function by itself.
import numpy as np
from bokeh.plotting import figure, show, output_file
# some pseudo data
xs = np.linspace(0, 2*np.pi, 25)
yerrs = np.random.uniform(0.1, 0.3, xs.shape)
ys = np.sin(xs) + np.random.normal(0, yerrs, xs.shape)
output_file('bokeh_errorbars.html')
# plot the points
p = figure(title='errorbars with bokeh', width=800, height=400)
p.xaxis.axis_label = 'x'
p.yaxis.axis_label = 'y'
p.circle(xs, ys, color='red', size=5, line_alpha=0)
# create the coordinates for the errorbars
err_xs = []
err_ys = []
for x, y, yerr in zip(xs, ys, yerrs):
err_xs.append((x, x))
err_ys.append((y - yerr, y + yerr))
# plot them
p.multi_line(err_xs, err_ys, color='red')
show(p)
这是结果:
一个人可能希望将其用作这样的功能:
One might want to use it as a function like this:
def errorbar(fig, x, y, xerr=None, yerr=None, color='red',
point_kwargs={}, error_kwargs={}):
fig.circle(x, y, color=color, **point_kwargs)
if xerr:
x_err_x = []
x_err_y = []
for px, py, err in zip(x, y, xerr):
x_err_x.append((px - err, px + err))
x_err_y.append((py, py))
fig.multi_line(x_err_x, x_err_y, color=color, **error_kwargs)
if yerr:
y_err_x = []
y_err_y = []
for px, py, err in zip(x, y, yerr):
y_err_x.append((px, px))
y_err_y.append((py - err, py + err))
fig.multi_line(y_err_x, y_err_y, color=color, **error_kwargs)
这篇关于如何在Python的散景图中添加误差线?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!