本文介绍了ml-engine vague错误:"grpc epoll fd:3";的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在尝试使用gcloud ml-engine jobs submit training进行训练,并且作业在日志中的以下输出卡住了:

I'm trying to train with gcloud ml-engine jobs submit training, and job is getting stuck with the following output on logs:

我的config.yaml:

My config.yaml:

trainingInput:
  scaleTier: CUSTOM
  masterType: standard_gpu
  workerType: standard_gpu
  parameterServerType: large_model
  workerCount: 1
  parameterServerCount: 1

关于"grpc epoll fd:3"是什么意思的任何提示以及如何解决?我的输入函数从gs://提供了一个16G TFRecord,但批处理= 4,随机播放buffer_size =4.每个输入样本都是一个单通道99 x 161px图像:形状(15939,)-不大.

Any hints about what "grpc epoll fd: 3" means and how to fix that? My input function is feeding a 16G TFRecord from gs://, but with batch = 4, shuffle buffer_size = 4. Each input sample is a single channel 99 x 161px image: shape (15939,) - not huge.

谢谢

推荐答案

不确定,这可能是Estimator实现中的错误.目前的解决方案是使用@ guoqing-xu

Maybe this is a bug in the Estimator implementation, not sure. The solution for now is to use tf.estimator.train_and_eval as suggested by @guoqing-xu

train_input_fn = gen_input(FLAGS.train_input)
eval_input_fn = gen_input(FLAGS.eval_input)

model_params = {
  'learning_rate': FLAGS.learning_rate,
}

estimator = tf.estimator.Estimator(model_dir=model_dir, model_fn=model_fn, params=model_params)
train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn, max_steps=1000)
eval_spec = tf.estimator.EvalSpec(input_fn=eval_input_fn, steps=None, start_delay_secs=30, throttle_secs=30)

tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)

这篇关于ml-engine vague错误:"grpc epoll fd:3";的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-24 15:14
查看更多