本文介绍了如何使用 OCR 检测图像中的下标数字?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我通过 pytesseract 绑定将 tesseract 用于 OCR.不幸的是,我在尝试提取包含下标样式数字的文本时遇到了困难 - 下标数字被解释为一个字母.

I am using tesseract for OCR, via the pytesseract bindings. Unfortunately, I encounter difficulties when trying to extract text including subscript-style numbers - the subscript number is interpreted as a letter instead.

例如在基本图像中:

我想将文本提取为CH3",即我不担心知道数字 3 是图像中的下标.

I want to extract the text as "CH3", i.e. I am not concerned about knowing that the number 3 was a subscript in the image.

我使用 tesseract 对此的尝试是:

My attempt at this using tesseract is:

import cv2
import pytesseract

img = cv2.imread('test.jpeg')

# Note that I have reduced the region of interest to the known
# text portion of the image
text = pytesseract.image_to_string(
    img[200:300, 200:320], config='-l eng --oem 1 --psm 13'
)
print(text)

不幸的是,这会错误地输出

Unfortunately, this will incorrectly output

'CHs'

也有可能获得 'CHa',具体取决于 psm 参数.

It's also possible to get 'CHa', depending on the psm parameter.

我怀疑这个问题与文本的基线"在整个行中不一致有关,但我不确定.

I suspect that this issue is related to the "baseline" of the text being inconsistent across the line, but I'm not certain.

如何从这种类型的图像中准确提取文本?

How can I accurately extract the text from this type of image?

更新 - 2020 年 5 月 19 日

在看到 Achintha Ihalage 的回答后,它没有为 tesseract 提供任何配置选项,我探索了 psm 选项.

After seeing Achintha Ihalage's answer, which doesn't provide any configuration options to tesseract, I explored the psm options.

由于感兴趣的区域是已知的(在这种情况下,我使用 EAST 检测来定位文本的边界框),tesseractpsm 配置选项,在我的原始代码中将文本视为一行,可能没有必要.对上面边界框给出的感兴趣区域运行 image_to_string 给出输出

Since the region of interest is known (in this case, I am using EAST detection to locate the bounding box of the text), the psm config option for tesseract, which in my original code treats the text as a single line, may not be necessary. Running image_to_string against the region of interest given by the bounding box above gives the output

CH

3

当然可以轻松处理以获得CH3.

which can, of course, be easily processed to get CH3.

推荐答案

您希望在将图像输入 tesseract 之前对图像进行预处理,以提高 OCR 的准确性.我在这里使用 PILcv2 的组合来做到这一点,因为 cv2 有很好的过滤器来去除模糊/噪声(膨胀、腐蚀、阈值)和 PIL 可以轻松增强对比度(将文本与背景区分开来),我想展示如何使用任何一种来完成预处理......(两者一起使用不是 100%虽然必要,如下所示).你可以写得更优雅——这只是一般的想法.

You want to do apply pre-processing to your image before feeding it into tesseract to increase the accuracy of the OCR. I use a combination of PIL and cv2 to do this here because cv2 has good filters for blur/noise removal (dilation, erosion, threshold) and PIL makes it easy to enhance the contrast (distinguish the text from the background) and I wanted to show how pre-processing could be done using either... (use of both together is not 100% necessary though, as shown below). You can write this more elegantly- it's just the general idea.

import cv2
import pytesseract
import numpy as np
from PIL import Image, ImageEnhance


img = cv2.imread('test.jpg')

def cv2_preprocess(image_path):
  img = cv2.imread(image_path)

  # convert to black and white if not already
  img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

  # remove noise
  kernel = np.ones((1, 1), np.uint8)
  img = cv2.dilate(img, kernel, iterations=1)
  img = cv2.erode(img, kernel, iterations=1)

  # apply a blur
  # gaussian noise
  img = cv2.threshold(cv2.GaussianBlur(img, (9, 9), 0), 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]

  # this can be used for salt and pepper noise (not necessary here)
  #img = cv2.adaptiveThreshold(cv2.medianBlur(img, 7), 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 31, 2)

  cv2.imwrite('new.jpg', img)
  return 'new.jpg'

def pil_enhance(image_path):
  image = Image.open(image_path)
  contrast = ImageEnhance.Contrast(image)
  contrast.enhance(2).save('new2.jpg')
  return 'new2.jpg'


img = cv2.imread(pil_enhance(cv2_preprocess('test.jpg')))


text = pytesseract.image_to_string(img)
print(text)

输出:

CH3

cv2 预处理生成的图像如下所示:

The cv2 pre-process produces an image that looks like this:

PIL 的增强为您提供:

在这个特定示例中,您实际上可以在 cv2_preprocess 步骤之后停止,因为这对读者来说已经足够清楚了:

In this specific example, you can actually stop after the cv2_preprocess step because that is clear enough for the reader:

img = cv2.imread(cv2_preprocess('test.jpg'))
text = pytesseract.image_to_string(img)
print(text)

输出:

CH3

但是,如果您正在处理的内容不一定以白色背景开始(即灰度缩放转换为浅灰色而不是白色)- 我发现 PIL 步骤确实有帮助.

But if you are working with things that don't necessarily start with a white background (i.e. grey scaling converts to light grey instead of white)- I have found the PIL step really helps there.

主要是提高tesseract准确性的方法通常是:

Main point is the methods to increase accuracy of the tesseract typically are:

  1. 修复 DPI(重新缩放)
  2. 修复图像的亮度/噪点
  3. 修复 tex 大小/线条(倾斜/扭曲文本)

执行其中一项或全部三项会有所帮助……但亮度/噪声比其他两项更具普遍性(至少根据我的经验).

Doing one of these or all three of them will help... but the brightness/noise can be more generalizable than the other two (at least from my experience).

这篇关于如何使用 OCR 检测图像中的下标数字?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

07-23 11:04