本文介绍了为什么逻辑回归称为回归?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

根据我所了解的,线性回归预测的结果可以具有连续值,而逻辑回归预测的结果是离散的.在我看来,逻辑回归类似于分类问题.那么,为什么叫回归?

According to what I have understood, linear regression predicts the outcome which can have continuous values, whereas logistic regression predicts outcome which is discrete. It seems to me that logistic regression is similar to a classification problem. So, why is it called regression?

还有一个相关的问题:线性回归和逻辑回归之间有什么区别?

There is also a related question: What is the difference between linear regression and logistic regression?

推荐答案

线性回归和逻辑回归之间有严格的联系.

There is a strict link between linear regression and logistic regression.

通过线性回归,您正在寻找k 个参数:

With linear regression you're looking for the k parameters:

使用逻辑回归可以达到相同的目标,但是等式是:

With logistic regression you've the same aim but the equation is:

g Sigmoid函数的地方:

所以:

您需要将K拟合到您的数据中.

and you need to fit K to your data.

假设存在二元分类问题,则输出h是示例x在分类任务中为正匹配的估计概率:

Assuming a binary classification problem, the output h is the estimated probability that the example x is a positive match in the classification task:

当概率大于0.5时,我们可以预测匹配".

When the probability is greater than 0.5 then we can predict "a match".

在以下情况下,概率大于0.5:

The probability is greater than 0.5 when:

并且在以下情况下是正确的

and this is true when:

超平面:

是决策边界.

总结:

  • 逻辑回归是使用相同线性回归基本公式的广义线性模型,但它是回归得出绝对结果的可能性.
  • logistic regression is a generalized linear model using the same basic formula of linear regression but it is regressing for the probability of a categorical outcome.

这是一个非常删节的版本.您可以在这些视频(机器学习的第三周,由Andrew Ng提供.

This is a very abridged version. You can find a simple explanation in these videos (third week of Machine Learning by Andrew Ng).

您还可以查看 http://www.holehouse.org/mlclass/06_Logistic_Regression .html 中有关课程的一些注释.

You can also take a look at http://www.holehouse.org/mlclass/06_Logistic_Regression.html for some notes on the lessons.

这篇关于为什么逻辑回归称为回归?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-20 09:07