本文介绍了大 pandas :进行规范化时忽略字符串列的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我正在使用以下代码规范化熊猫数据框:
I am using the following code to normalize a pandas data frame:
df_norm = (df - df.mean()) / (df.max() - df.min())
当所有列均为数字时,此方法工作正常.但是,现在我在df
中有一些字符串列,并且上述规范化得到了错误.有没有一种方法只能在数据帧的数字列上执行这种规范化(保持字符串列不变)?谢谢!
This works fine when all columns are numeric. However, now I have some string columns in df
and the above normalization got errors. Is there a way to perform such normalization only on numeric columns of a data frame (keeping string column unchanged)? Thanks!
推荐答案
您可以使用select_dtypes
计算所需列的值:
You can use select_dtypes
to calculate value for the desired columns:
df = pd.DataFrame({'a': [1, 2, 3], 'b': ['a', 'b', 'c'], 'c': [4, 5, 6]})
df
a b c
0 1 a 4
1 2 b 5
2 3 c 6
df_num = df.select_dtypes(include=[np.number])
df_num
a c
0 1 4
1 2 5
2 3 6
然后您可以将它们分配回原始df:
And then you can assign them back to the original df:
df_norm = (df_num - df_num.mean()) / (df_num.max() - df_num.min())
df[df_norm.columns] = df_norm
df
a b c
0 -0.5 a -0.5
1 0.0 b 0.0
2 0.5 c 0.5
这篇关于大 pandas :进行规范化时忽略字符串列的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!