问题描述
为了在字符串中找到子字符串的位置,一个简单的算法将花费 O(n^2)
时间.但是,使用一些有效的算法(例如 KMP 算法),这可以在 O(n) 时间内实现:
For finding the position of a substring, inside a string, a naive algorithm will take O(n^2)
time. However, using some efficient algorithms (eg KMP algorithm), this can be achieved in O(n) time:
s = 'saurabh'
w = 'au'
def get_table():
i = 0; j = 2
t = []
t.append(-1); t.append(0)
while i < len(w):
if w[i] == w[j-1]:
t.append(j+1)
j += 1
else:
t.append(0)
j = 0
i += 1
return t
def get_word():
t = get_table()
i = j = 0
while i+j < len(s):
if w[j] == s[i+j]:
if j == len(w) - 1:
return i
j += 1
else:
if t[j] > -1:
i = i + j - t[j]
j = t[j]
else:
i += 1
return -1
if __name__ == '__main__':
print get_word()
然而,如果我们这样做:'saurabh'.index('ra')
,它是否在内部使用了一些有效的算法来在 O(n)
或它使用复杂度O(n^2)
?
However, if we do: 'saurabh'.index('ra')
, does it internally uses some efficient algorithm to compute this in O(n)
or it uses naive algorithm of complexity O(n^2)
?
推荐答案
在那篇文章 [1] 中,作者详细介绍了算法并对其进行了解释.来自文章:
In that article [1] author goes through the algoritm and explains it. From article:
The function "fastsearch" is called. It is a mix between
Boyer-Moore and Horspool algorithms plus couple of neat tricks.
来自 Boyer–Moore–Horspool 算法 [2] 的 wiki 页面:
And from the wiki page of Boyer–Moore–Horspool algorithm [2]:
The algorithm trades space for time in order to obtain an
average-case complexity of O(N) on random text, although
it has O(MN) in the worst case, where the length of the
pattern is M and the length of the search string is N.
希望有帮助!
[1] http://www.laurentluce.com/posts/python-string-objects-implementation
[2] https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore%E2%80%93Horspool_algorithm
这篇关于python str.index 时间复杂度的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!