问题描述
我注意到,matlab计算矩阵的特征值和特征向量的方式有所不同,其中matlab返回实值,而numpy返回复杂值的特征值和向量.例如:
I have noticed there is a difference between how matlab calculates the eigenvalue and eigenvector of a matrix, where matlab returns the real valued while numpy's return the complex valued eigen valus and vector. For example:
对于矩阵:
A=
1 -3 3
3 -5 3
6 -6 4
Numpy:
w, v = np.linalg.eig(A)
w
array([ 4. +0.00000000e+00j, -2. +1.10465796e-15j, -2. -1.10465796e-15j])
v
array([[-0.40824829+0.j , 0.24400118-0.40702229j,
0.24400118+0.40702229j],
[-0.40824829+0.j , -0.41621909-0.40702229j,
-0.41621909+0.40702229j],
[-0.81649658+0.j , -0.66022027+0.j , -0.66022027-0.j ]])
Matlab:
[E, D] = eig(A)
E
-0.4082 -0.8103 0.1933
-0.4082 -0.3185 -0.5904
-0.8165 0.4918 -0.7836
D
4.0000 0 0
0 -2.0000 0
0 0 -2.0000
有没有一种方法可以像在Matlab中那样获取python中的真实特征值?
Is there a way of getting the real eigen values in python as it is in matlab?
推荐答案
要使NumPy在复杂部分较小时返回真实特征值的对角线数组,可以使用
To get NumPy to return a diagonal array of real eigenvalues when the complex part is small, you could use
In [116]: np.real_if_close(np.diag(w))
Out[116]:
array([[ 4., 0., 0.],
[ 0., -2., 0.],
[ 0., 0., -2.]])
根据 Matlab文档,[E, D] = eig(A)
返回满足A*E = E*D
的E
和D
:我没有Matlab,所以我将使用Octave来检查您发布的结果:
According to the Matlab docs,[E, D] = eig(A)
returns E
and D
which satisfy A*E = E*D
:I don't have Matlab, so I'll use Octave to check the result you posted:
octave:1> A = [[1, -3, 3],
[3, -5, 3],
[6, -6, 4]]
octave:6> E = [[ -0.4082, -0.8103, 0.1933],
[ -0.4082, -0.3185, -0.5904],
[ -0.8165, 0.4918, -0.7836]]
octave:25> D = [[4.0000, 0, 0],
[0, -2.0000, 0],
[0, 0, -2.0000]]
octave:29> abs(A*E - E*D)
ans =
3.0000e-04 0.0000e+00 3.0000e-04
3.0000e-04 2.2204e-16 3.0000e-04
0.0000e+00 4.4409e-16 6.0000e-04
误差的幅度主要是由于Matlab报告的值是显示的精度低于Matlab在内存中保存的实际值.
在NumPy中,w, v = np.linalg.eig(A)
返回满足以下条件的w
和v
np.dot(A, v) = np.dot(v, np.diag(w))
:
In NumPy, w, v = np.linalg.eig(A)
returns w
and v
which satisfynp.dot(A, v) = np.dot(v, np.diag(w))
:
In [113]: w, v = np.linalg.eig(A)
In [135]: np.set_printoptions(formatter={'complex_kind': '{:+15.5f}'.format})
In [136]: v
Out[136]:
array([[-0.40825+0.00000j, +0.24400-0.40702j, +0.24400+0.40702j],
[-0.40825+0.00000j, -0.41622-0.40702j, -0.41622+0.40702j],
[-0.81650+0.00000j, -0.66022+0.00000j, -0.66022-0.00000j]])
In [116]: np.real_if_close(np.diag(w))
Out[116]:
array([[ 4., 0., 0.],
[ 0., -2., 0.],
[ 0., 0., -2.]])
In [112]: np.abs((np.dot(A, v) - np.dot(v, np.diag(w))))
Out[112]:
array([[4.44089210e-16, 3.72380123e-16, 3.72380123e-16],
[2.22044605e-16, 4.00296604e-16, 4.00296604e-16],
[8.88178420e-16, 1.36245817e-15, 1.36245817e-15]])
In [162]: np.abs((np.dot(A, v) - np.dot(v, np.diag(w)))).max()
Out[162]: 1.3624581677742195e-15
In [109]: np.isclose(np.dot(A, v), np.dot(v, np.diag(w))).all()
Out[109]: True
这篇关于python vs matlab中的特征值和特征向量的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!