问题描述
我有一个糟糕的 HTTPD access_log,只想跳过糟糕"的行.
I've got a lousy HTTPD access_log and just want to skip the "lousy" lines.
在 Scala 中,这很简单:
In scala this is straightforward:
import scala.util.Try
val log = sc.textFile("access_log")
log.map(_.split(' ')).map(a => Try(a(8))).filter(_.isSuccess).map(_.get).map(code => (code,1)).reduceByKey(_ + _).collect()
对于python,我通过使用lambda"符号显式定义一个函数来获得以下解决方案:
For python I've got the following solution by explicitly defining a function in contrast using the "lambda" notation:
log = sc.textFile("access_log")
def wrapException(a):
try:
return a[8]
except:
return 'error'
log.map(lambda s : s.split(' ')).map(wrapException).filter(lambda s : s!='error').map(lambda code : (code,1)).reduceByKey(lambda acu,value : acu + value).collect()
在 pyspark 中是否有更好的方法(例如在 Scala 中)?
Is there a better way doing this (e.g. like in Scala) in pyspark?
非常感谢!
推荐答案
更好是一个主观术语,但您可以尝试一些方法.
Better is a subjective term but there are a few approaches you can try.
在这种特殊情况下,您可以做的最简单的事情就是避免任何异常.您只需要一个
flatMap
和一些切片:
log.flatMap(lambda s : s.split(' ')[8:9])
如您所见,这意味着不需要异常处理或后续的filter
.
As you can see it means no need for an exception handling or subsequent filter
.
以前的想法可以用一个简单的包装器来扩展
Previous idea can be extended with a simple wrapper
def seq_try(f, *args, **kwargs):
try:
return [f(*args, **kwargs)]
except:
return []
和示例用法
from operator import div # FYI operator provides getitem as well.
rdd = sc.parallelize([1, 2, 0, 3, 0, 5, "foo"])
rdd.flatMap(lambda x: seq_try(div, 1., x)).collect()
## [1.0, 0.5, 0.3333333333333333, 0.2]
终于有更多面向对象的方法了:
finally more OO approach:
import inspect as _inspect
class _Try(object): pass
class Failure(_Try):
def __init__(self, e):
if Exception not in _inspect.getmro(e.__class__):
msg = "Invalid type for Failure: {0}"
raise TypeError(msg.format(e.__class__))
self._e = e
self.isSuccess = False
self.isFailure = True
def get(self): raise self._e
def __repr__(self):
return "Failure({0})".format(repr(self._e))
class Success(_Try):
def __init__(self, v):
self._v = v
self.isSuccess = True
self.isFailure = False
def get(self): return self._v
def __repr__(self):
return "Success({0})".format(repr(self._v))
def Try(f, *args, **kwargs):
try:
return Success(f(*args, **kwargs))
except Exception as e:
return Failure(e)
和示例用法:
tries = rdd.map(lambda x: Try(div, 1.0, x))
tries.collect()
## [Success(1.0),
## Success(0.5),
## Failure(ZeroDivisionError('float division by zero',)),
## Success(0.3333333333333333),
## Failure(ZeroDivisionError('float division by zero',)),
## Success(0.2),
## Failure(TypeError("unsupported operand type(s) for /: 'float' and 'str'",))]
tries.filter(lambda x: x.isSuccess).map(lambda x: x.get()).collect()
## [1.0, 0.5, 0.3333333333333333, 0.2]
您甚至可以将模式匹配与 multipledispatch
You can even use pattern matching with multipledispatch
from multipledispatch import dispatch
from operator import getitem
@dispatch(Success)
def check(x): return "Another great success"
@dispatch(Failure)
def check(x): return "What a failure"
a_list = [1, 2, 3]
check(Try(getitem, a_list, 1))
## 'Another great success'
check(Try(getitem, a_list, 10))
## 'What a failure'
如果您喜欢这种方法,我已将更完整的实现推送到 GitHub 和 pypi.
If you like this approach I've pushed a little bit more complete implementation to GitHub and pypi.
这篇关于pyspark 中的 scala.util.Try 相当于什么?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!