内部排序的方面ggplot2

内部排序的方面ggplot2

本文介绍了内部排序的方面ggplot2的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧! 问题描述 29岁程序员,3月因学历无情被辞! 我试图在ggplot2中绘制一个方面,但我很努力地获得不同方面的内部排序。数据如下所示: head(THAT_EXT) ID FILE GENRE NODE 1 CKC_1823_01 CKC小说更好 2 CKC_1824_01 CKC小说更好 3 EW9_192_03 EW9科学更好更好 4 H0B_265_01 H0B科学普遍悲伤 5 CS2_231_03 CS2学术散文理想 6 FED_8_05 FED学术散文确定 str(THAT_EXT)'data.frame':851 obs。 4个变量: $ ID:因子w / 851等级A05_122_01,A05_277_07,..:345 346 439 608 402 484 319 395 228 5 ... $ FILE: 241级A05,A06,A0K,..:110 110 127 169 120 135 105 119 79 2 ... $ GENRE:有5个等级的因子Academic Prose,..: 4 4 5 5 1 1 1 5 1 5 ... $ NODE:因子有115个等级荒谬,接受,..:14 14 14 89 23 16 59 59 18 66 ... 部分问题是无法获得排序权。以下是我使用的NODE排序代码: THAT_EXT 节点< - factor(NODE, levels = names(sort(table(NODE), decrease = TRUE)))) 当我用下面的代码绘制这个图时,我得到一个图表,其中NODE在单个GENRE中未正确排序,因为不同的NODE在不同的GENRE中更频繁: $ b $ p1 ggplot(THAT_EXT,aes(x = NODE))+ geom_bar()+ scale_x_discrete(THAT_EXT,breaks = NULL)+#在x轴上禁止标记 facet_wrap(〜GENRE) 我想要的是每个方面都有NODE按特定GENRE的降序排序。有人能帮忙吗? structure(list(ID = structure(c(1L,2L,3L,4L,10L,133L,137L, 138L,139L,140L,141L,142L,143L,144L,145L,146L,147L,148L,$ b $ 149L,150L,151L,152L,153L,154L,155L,156L,157L,158L,159L, 160L,161L,162L,163L,164L,165L,166L,167L,168L,169L,170L, 171L,172L,173L,174L,175L,176L,177L,178L,179L,180L, 181L, 182L,183L,184L,185L,186L,187L,188L,189L,190L,191L,192L, 193L,194L,195L,196L,197L,198L,199L,200L,201L, 202L,203L, 204L,205L,206L,207L,208L,212L,213L,214L,215L,216L,217L, 218L,219L,220L,221L,222L,223L,224L,225L, 226L,227L,228L, 229L,230L,231L,232L,233L,234L,235L,236L,237L,238L,239L,$ b $ 240L,241L,267L,268L,269L,270L,271L, 272L,273L,274L,275L, 276L,277L,278L,279L,280L,281L,282L,283L,284L,290L,291L, 298L,299L,300L,303L,304L,305L, 306L,307L,308L,309L,310L, 313L,314L,315L,316L,317L,318L,3 19L,327L,328L,329L,330L, 331L,332L,333L,334L,335L,336L,337L,338L,339L,340L,341L,$ b $ 342L,343L,344L,345L,346L, 347L,348L,352L,353L,354L,355L, 356L,357L,358L,359L,360L,349L,350L,351L,361L,362L,363L, 364L,365L,366L,367L, 368L,369L,370L,371L,372L,373L,374L, 375L,376L,377L,378L,379L,380L,381L,12L,13L,14L,15L, 16L,17L,18L, 19L,20L,21L,22L,23L,24L,25L,26L,27L,28L, 29L,30L,31L,32L,33L,34L,35L,36L,41L,42L,43L,44L,45L, 46L,50L,54L,72L,73L,74L,75L,76L,90L,91L,92L,97L,98L, 102L,115L,125L,126L,127L,128L​​,129L,130L, 131L,132L,209L, 210L,211L,242L,243L,244L,245L,246L,289L,292L,293L,294L, 295L,296L,297L,301L,302L,311L,312L, 320L,321L,322L,323L, 324L,325L,326L,382L,383L,384L,385L,386L,387L,388L,5L, 6L,7L,8L,9L,11L,37L, 38L,39L,40L,47L,48L,49L,51L, 52L,53L,55L,56L,57L,58L,59L,60L,61L ,62L,63L,64L,65L, 66L,67L,68L,69L,70L,71L,77L,78L,79L,80L,81L,82L,83L,$ b $ 84L,85L,86L,87L ,88L,89L,93L,94L,95L,96L,99L,100L, 101L,103L,104L,105L,106L,107L,108L,109L,110L,111L,112L,$ b $ 113L,114L ,116L,117L,118L,119L,120L,121L,122L,123L,124L, 134L,135L,136L,247L,248L,249L,250L,251L,252L,253L,254L, 255L ,256L,257L,258L,259L,260L,261L,262L,263L,264L,265L, 266L,285L,286L,287L,288L),标签= c(A05_122_01,A05_277_07,A05_400_01,A05_99_01,A06_1283_02,A06_1389_01,A06_1390_01,A06_1441_02,A06_884_03,A0K_1190_03,A77_1684_01,A8K_525_03 bA8K_582_01A8K_645_01A8K_799_01A90_341_02A90_496_01A94_217_01A94_472_01A94_477_03A9M_164_01A9M_259_03 A9N_199_01,A9N_489_01,A9N_591_01,A9R_173_01,A9R_425_02,A9W_536_02,AA5_121_01,AAE_203_01,AAE_243_01,AAE_412_01,AAW_14_0 3,AAW_244_02,AAW_297_04,AAW_365_04,ADG_1398_01,ADG_1500_01,ADG_1507_01,ADG_1516_01,AHB_336_01,AHB_421_01,AHJ_1090_02 ,ARJ_619_01,AR3_340_01,AR3_91_03,ARF_879_01,ARF_985_01,ARF_991_02,ARK_1891_01,ASL_33_04,ASL_43_01,ASL_9_01 B0N_630_01,B09_1475_01,B09_1493_01,B09_1539_01,B0G_197_01,B0G_320_01,B0N_1037_01,B0N_624_01,B0N_645_02,B0N_683_01 ,B3G_313_04,B3G_320_03,B3G_398_02,B7M_1630_01,B7M_1913_01,BNN_746_02,BNN_895_01,BP7_2426_01,BP7_2777_01,BP7_2898_01 BP9_410_01,BP9_599_01,BPK_829_01,C93_1407_02,C9A_181_01,C9A_196_01,C9A_365_01,C9A_82_02,C9A_9_01,CB9_306_02,CB9_63_04 ,CB9_86_01,CBJ_439_01,CBJ_702_02,CBJ_705_01,CCM_320_01,CCM_665_01,CCM_669_02,CCN_1036_02,CCN_1078_01,CCN_1119_01 CCN_784_01,CCW_2284_02,CCW_2349_ 03CE7_242_02CE7_284_01CE7_39_01CEB_1675_01CER_145_03CER_23_01CER_235_02CER_378_10CET_1056_02CET_680_01 ,CET_705_01,CET_797_01,CET_838_01,CET_879_05,,CET_946_03,CET_986_01,CEY_2977_01,CJ3_107_02,CJ3_114_03,,CJ3_20_01, CJ3_81_01,CK2_112_01,CK2_22_01,CK2_392_01,CK2_42_01,CK2_75_01,CKC_1776_01,CKC_1777_01,CKC_1823_01,CKC_1824_01,CKC_1860_01 ,CKC_1883_01,CKC_1883_02,CKC_2127_01,,CMN_1439_02,CRM_5767_01,CRM_5770_03,CRM_5789_01,CS2_110_01,,CS2_131_01, CS2_187_01,CS2_187_03,CS2_231_03,CS2_249_02,CS2_301_01,CS2_35_01,CS2_58_02,EV6_16_01,EV6_206_02,EV6_240_01,EV6_244_02 ,EV6_28_01,EV6_30_01,EV6_32_01,EV6_450_01,EV6_69_01,EV6_80_01,EV6_91_01,FAC_1019_01,FAC_1026_01,FAC_1027_01 FAC_1235_01,FAC_1269_05,FAC_1270_05,F FED_1306_03,FAC_933_01,FAC_950_01,FAC_960_01,FED_105_01,FED_120_02,FED_21_02,FED_281_02,FED_302_02,FED_53_01 ,FED_8_05,FEF_498_03,FEF_674_03,FR2_410_01,FR2_557_02,FR2_593_01,FR2_691_01,FR4_232_01,FR4_331_01,FR4_346_01 FS7_818_01,FS7_919_01,FU0_368_02,FYT_1138_01,FYT_1183_01,FYT_901_05,G08_1336_01,G1E_385_01,G1N_824_01,G1N_860_01,G1N_868_01 ,G1N_975_01,GU5_854_01,GUJ_423_01,GUJ_501_01,GUJ_611_01,GUJ_629_03,GUJ_700_01,GV0_10_01,GV0_104_01,GV0_111_01 GV0_160_01,GV0_232_02,GV2_1465_01,GV2_1899_01,GV6_2683_01,GW6_297_01,GW6_306_05,GW6_307_01,GW6_322_01,GW6_330_02 ,GW6_335_01,GW6_338_01,GW6_367_02,GW6_373_01,GW6_407_01,GW6_411_01,GW6_413_01,GW6_421_01,GW6_423_01,GW6_424_01 GW6_428_01,GW6_447_01,GWM_480_01 ,GWM_533_02,GWM_554_02,GWM_554_03,GWM_609_01,GWM_609_04,GWM_610_01,GWM_730_01,GWM_731_01,GWM_738_01,GWM_804_06, GWM_815_01,GWM_832_03,GVP_179_01,,GVP_211_01,GVP_393_02,GVP_443_02,GVP_710_01,H0B_171_04,,H0B_216_01,H0B_265_01,H0B_32_01 ,H0B_361_03,H0B_365_01,H0B_369_01,H0B_74_01,H0B_93_01,H10_1002_01,H10_1032_04,H10_653_01,H10_803_01,H10_824_01, H10_825_03,H10_881_01,H10_986_01,H78_851_04,H78_891_01,H78_946_04,H79_1959_19,H7S_110_05,H7S_130_06,H7S_131_03,H7S_131_04 ,H7S_146_01,H7S_148_01,H7S_164_01,H7S_179_01,H7S_54_01,H7S_56_05,H7S_62_03,H7S_79_01,H7S_8_01,H7S_81_01 H7S_83_01,,H7S_87_01,H7S_92_03,H7X_1028_02,H7X_1091_01,H7X_691_01,,H7X_695_01,H8H_2917_01,H8K_153_01,H8K_55_01,H8M_1897_01 ,H8M_2104_02,H8T_3316_03,H98_3204_01, H98_3410_01,H98_3490_02,H9R_130_02,H9R_39_01,H9S_1297_01,HA2_3107_02,HA2_3284_01,HPY_754_04,HPY_785_09HPY_799_03HPY_807_04 ,HPY_830_04,HPY_838_02,HPY_843_01,HPY_869_11,HR7_190_01,HR7_440_01,HTP_540_01,HTP_585_01,HTP_588_05,HTP_593_01 HTP_601_01,,HTP_613_01,HTP_648_02,HTW_197_01,HTW_494_01,HTW_750_01,,HWL_2770_01,HWL_2919_01,HWM_45_01,HWM_45_02,HXY_1047_03 ,HXY_701_01,HXY_781_01,HXY_783_01,HXY_784_01,HXY_836_01,HXY_931_01,HXY_963_01,HXY_972_01,HXY_985_03,HY6_1024_01 HY6_1025_01,HY6_1164_01,HY6_1223_01,HY6_988_03,HY6_989_01,HY8_160_01,HY8_164_01,HY8_292_03,HY8_316_01,HY9_778_03,HY9_845_02,HYX_235_08,HYX_245_01,HYX_88_01,J12_1474_02,J12_1492_01,J12_1571_01,J12_1845_01,J14_341_01,J18_597_04, J18_698_02,J18_759_01,J18_828_01, J3R_197_01,J3R_219_02,,J3R_277_04,J3T_267_01,J3T_269_02,J3T_57_02,J41_41_02,,J41_58_03, ,J9D_147_05,J9D_218_01,J9D_411_01,J9D_616_01,J9D_616_02,JNB_563_02,JT7_118_01,JT7_129_02,JT7_218_02,JT7_344_02 JXS_3663_01,JXU_407_01,JXU_468_02,JXU_559_01,JXV_1439_04,JXV_1592_01,JY1_100_01),class =factor),GENRE = structure(c 1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L, 1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L, 1L,1L,1L,1L,1L,1L, 1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L, $ 1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L, 1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L, 1L,1L,1L, 1L,1L,1L,1L,1L,1L,1L, 1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L, 1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L, 1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,2L, 2L,2L,2L,2L,2L,2L,2L,2L,2L, 2L,2L,2L,2L,2L,2L, 2L,2L,2L,2L,2L,2L,2L,3L,3L,3L,3L,3L,3L,3L,3L,3L, $ b 3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L,3L, 4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L, 4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,4L, 4L,4L,4L,4L,4L,4L,4L,4L,4L,4L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L, 5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L, 5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L, 5L, 5L,5L,5L,5L,5L,5L,5L, 5L,5L,5L,5L, 5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L, 5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L,5L),标签= c(Academic Prose对话,新闻,小说,大众科学),class =因子),NODE =结构(c(9L, 10L,10L,10L,4L,10L, 71L,35L,49L,6L,5L,15L,28L,44L, 64L,64L,28L,28L,18L,18L,32L,18L,58L,10L,72L,28L,18L, 10L,64L,10L,35L,64L,64L,69L,8L,10L,50L,69L,49L,49L, 15L,69L,10L,49L,8L,64L,49L,10L,69L,18L, 61L,67L,67L, 61L,57L,69L,11L,10L,64L,10L,59L,61L,49L,10L,59L,1L, 61L,35L,54L,54L,39L, 44L,61L,64L,69L,1L,23L,49L,49L, 8L,69L,49L,69L,49L,49L,69L,35L,49L,49L,49L,35L,10L, 49L,48L,10L,49L,11L,44L,50L,11L,50L,69L,49L,10L,59L, 68L,47L,69L,49L,35L,29L,8L,49L,50L,35L, 10L,35L,8L, 35L,8L,10L,35L,10L,10L,10L,35L,44L,61L,35L,44L,28L , 47L,39L,39L,49L,61L,43L,60L,19L,10L,10L,10L,44L,44L, 62L,44L,10L,59L,10L,61L,1L,53L ,33L,10L,8L,8L,64L, 64L,10L,57L,61L,64L,66L,19L,61L,64L,10L,10L,8L,19L, 35L,28L, ,62L,35L,35L,42L,35L,28L,32L,64L,10L,18L, , 1L,38L,28L,28L,33L,10L,44L,29L,16L,8L,28L,69L,32L, 10L,61L,20L,35L,10L,28L,10L,32L 10L,46L,59L,64L,35L, 66L,2L,35L,28L,30L,18L,69L,32L,10L,28L,17L,36L,64L,$ b $ 61L,10L,64L ,33L,3L,37L,26L,28L,64L,44L,28L,64L,64L, 6L,6L,64L,50L,32L,8L,64L,50L,28L,24L,18L,47L,35L , 40L,24L,55L,44L,22L,1L,49L,44L,18L,45L,63L,64L,35L, 12L,35L,10L,35L,10L,10L,10L,44L ,44L,44L,65L,44L,55L, 32L,49L,64L,39L,69L,1L,60L,7L,14L,44L,33L,10L,19L,$ b $ 10L,70L,53L ,8L,61L,61L,44L,61L,65L,28L,68L,69L,27L, 61L,28L,72L, 34L,61L,32L,10L,49L,35L,49L,10L,10L,69L, 39L,40L,19L,59L,53L,49L,49L,44L,49L,35L,49L,61L,61L, 1L,10L,28L,49L,35L,49L,61L,50L,69L,35L,61L,35L,50L, 10L,28L,69L,61L,21L,69L,29L,35L, 35L,35L,11L,69L,8L, 41L,56L,35L,61L,69L,49L,49L,49L,1L,13L,64L,64L,52L, 44L,64L, 50L,49L,69L,11L,59L,49L,31L),标签= c(明显的,合适的,糟糕的,公理的,最好的,更好的, b $ b确定特征清楚可以想象方便至关重要残忍可取的令人失望强调 基本,明显,预期,非凡,公平,b $ b幸运,滑稽,好,很棒 b $ b不可能的难以置信的不可避免的不可避免的有趣的具有讽刺意味的可能的可能的幸运的可笑的 自然,必要,需要,显着,值得注意,显而易见,奇怪,可能的,可能的,适当的,相关的,显着的,显露的,正确的,悲伤的,不言而喻明智的显着的惊人的令人惊讶的有症状可怕的真实的典型的可理解的意外的,不幸的,不太可能的,不合理的,不真实的,重要的),class =factor)),.Names = c(ID,GENRE ,NODE),class =data.frame,row.names = c(NA,-388L)) 解决方案正如我已经提到的那样: facet_wrap 不适用于单个比例。至少我没有找到解决方案。因此,在 scale_x_discrete 中设置标签并不会带来理想的效果。 但是我的解决方法是: library(plyr) library(ggplot2) nodeCount< - ddply(df,c (GENRE,NODE),nrow) nodeCount $ factors< - paste(nodeCount $ GENRE,nodeCount $ NODE,sep =。) nodeCount< - nodeCount [order nodeCount $ GENRE,nodeCount $ V1,递减= TRUE),] nodeCount $因数< - factor(nodeCount $因数,levels = nodeCount $因数) head(nodeCount) GENRE NODE V1因子 121科学普及可能14科学普及可能 128科普惊人11科普惊人 116科普可能9科普可能 132大众科学不大可能9大众科学不可能 103大众科学清除7大众科学清除 129大众科学真正5大众科学e.true $ bg< - ggplot(nodeCount,aes(y = V1,x = factors))+ geom_bar()+ scale_x_discrete(breaks = NULL)+#在x轴上禁止标记 facet_wrap(〜GENRE,scale =free_x)+ geom_text(aes(label = NODE,y = V1 + 2),angle = 45,vjust = 0,hjust = 0,size = 3) 给出: I'm trying to plot a facets in ggplot2 but I struggle to get the internal ordering of the different facets right. The data looks like this:head(THAT_EXT) ID FILE GENRE NODE1 CKC_1823_01 CKC Novels better2 CKC_1824_01 CKC Novels better3 EW9_192_03 EW9 Popular Science better4 H0B_265_01 H0B Popular Science sad5 CS2_231_03 CS2 Academic Prose desirable6 FED_8_05 FED Academic Prose certainstr(THAT_EXT)'data.frame': 851 obs. of 4 variables: $ ID : Factor w/ 851 levels "A05_122_01","A05_277_07",..: 345 346 439 608 402 484 319 395 228 5 ... $ FILE : Factor w/ 241 levels "A05","A06","A0K",..: 110 110 127 169 120 135 105 119 79 2 ... $ GENRE: Factor w/ 5 levels "Academic Prose",..: 4 4 5 5 1 1 1 5 1 5 ... $ NODE : Factor w/ 115 levels "absurd","accepted",..: 14 14 14 89 23 16 59 59 18 66 ...Part of the problem is that can't get the sorting right. Here is the code for the sorting of NODE that I use:THAT_EXT <- within(THAT_EXT, NODE <- factor(NODE, levels=names(sort(table(NODE), decreasing=TRUE))))When I plot this with the code below I get a graphs in which the NODE is not correctly sorted in the individual GENREs since different NODEs are more frequent in different GENREs: p1 <-ggplot(THAT_EXT, aes(x=NODE)) +geom_bar() +scale_x_discrete("THAT_EXT", breaks=NULL) + # supress tick marks on x axisfacet_wrap(~GENRE)What I want is for every facet to have NODE sorted in decreasing order for that particular GENRE. Can anyone help with this? structure(list(ID = structure(c(1L, 2L, 3L, 4L, 10L, 133L, 137L,138L, 139L, 140L, 141L, 142L, 143L, 144L, 145L, 146L, 147L, 148L,149L, 150L, 151L, 152L, 153L, 154L, 155L, 156L, 157L, 158L, 159L,160L, 161L, 162L, 163L, 164L, 165L, 166L, 167L, 168L, 169L, 170L,171L, 172L, 173L, 174L, 175L, 176L, 177L, 178L, 179L, 180L, 181L,182L, 183L, 184L, 185L, 186L, 187L, 188L, 189L, 190L, 191L, 192L,193L, 194L, 195L, 196L, 197L, 198L, 199L, 200L, 201L, 202L, 203L,204L, 205L, 206L, 207L, 208L, 212L, 213L, 214L, 215L, 216L, 217L,218L, 219L, 220L, 221L, 222L, 223L, 224L, 225L, 226L, 227L, 228L,229L, 230L, 231L, 232L, 233L, 234L, 235L, 236L, 237L, 238L, 239L,240L, 241L, 267L, 268L, 269L, 270L, 271L, 272L, 273L, 274L, 275L,276L, 277L, 278L, 279L, 280L, 281L, 282L, 283L, 284L, 290L, 291L,298L, 299L, 300L, 303L, 304L, 305L, 306L, 307L, 308L, 309L, 310L,313L, 314L, 315L, 316L, 317L, 318L, 319L, 327L, 328L, 329L, 330L,331L, 332L, 333L, 334L, 335L, 336L, 337L, 338L, 339L, 340L, 341L,342L, 343L, 344L, 345L, 346L, 347L, 348L, 352L, 353L, 354L, 355L,356L, 357L, 358L, 359L, 360L, 349L, 350L, 351L, 361L, 362L, 363L,364L, 365L, 366L, 367L, 368L, 369L, 370L, 371L, 372L, 373L, 374L,375L, 376L, 377L, 378L, 379L, 380L, 381L, 12L, 13L, 14L, 15L,16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L,29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 41L, 42L, 43L, 44L, 45L,46L, 50L, 54L, 72L, 73L, 74L, 75L, 76L, 90L, 91L, 92L, 97L, 98L,102L, 115L, 125L, 126L, 127L, 128L, 129L, 130L, 131L, 132L, 209L,210L, 211L, 242L, 243L, 244L, 245L, 246L, 289L, 292L, 293L, 294L,295L, 296L, 297L, 301L, 302L, 311L, 312L, 320L, 321L, 322L, 323L,324L, 325L, 326L, 382L, 383L, 384L, 385L, 386L, 387L, 388L, 5L,6L, 7L, 8L, 9L, 11L, 37L, 38L, 39L, 40L, 47L, 48L, 49L, 51L,52L, 53L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L,66L, 67L, 68L, 69L, 70L, 71L, 77L, 78L, 79L, 80L, 81L, 82L, 83L,84L, 85L, 86L, 87L, 88L, 89L, 93L, 94L, 95L, 96L, 99L, 100L,101L, 103L, 104L, 105L, 106L, 107L, 108L, 109L, 110L, 111L, 112L,113L, 114L, 116L, 117L, 118L, 119L, 120L, 121L, 122L, 123L, 124L,134L, 135L, 136L, 247L, 248L, 249L, 250L, 251L, 252L, 253L, 254L,255L, 256L, 257L, 258L, 259L, 260L, 261L, 262L, 263L, 264L, 265L,266L, 285L, 286L, 287L, 288L), .Label = c("A05_122_01", "A05_277_07","A05_400_01", "A05_99_01", "A06_1283_02", "A06_1389_01", "A06_1390_01","A06_1441_02", "A06_884_03", "A0K_1190_03", "A77_1684_01", "A8K_525_03","A8K_582_01", "A8K_645_01", "A8K_799_01", "A90_341_02", "A90_496_01","A94_217_01", "A94_472_01", "A94_477_03", "A9M_164_01", "A9M_259_03","A9N_199_01", "A9N_489_01", "A9N_591_01", "A9R_173_01", "A9R_425_02","A9W_536_02", "AA5_121_01", "AAE_203_01", "AAE_243_01", "AAE_412_01","AAW_14_03", "AAW_244_02", "AAW_297_04", "AAW_365_04", "ADG_1398_01","ADG_1500_01", "ADG_1507_01", "ADG_1516_01", "AHB_336_01", "AHB_421_01","AHJ_1090_02", "AHJ_619_01", "AR3_340_01", "AR3_91_03", "ARF_879_01","ARF_985_01", "ARF_991_02", "ARK_1891_01", "ASL_33_04", "ASL_43_01","ASL_9_01", "AT7_1031_01", "B09_1162_01", "B09_1475_01", "B09_1493_01","B09_1539_01", "B0G_197_01", "B0G_320_01", "B0N_1037_01", "B0N_624_01","B0N_645_02", "B0N_683_01", "B3G_313_04", "B3G_320_03", "B3G_398_02","B7M_1630_01", "B7M_1913_01", "BNN_746_02", "BNN_895_01", "BP7_2426_01","BP7_2777_01", "BP7_2898_01", "BP9_410_01", "BP9_599_01", "BPK_829_01","C93_1407_02", "C9A_181_01", "C9A_196_01", "C9A_365_01", "C9A_82_02","C9A_9_01", "CB9_306_02", "CB9_63_04", "CB9_86_01", "CBJ_439_01","CBJ_702_02", "CBJ_705_01", "CCM_320_01", "CCM_665_01", "CCM_669_02","CCN_1036_02", "CCN_1078_01", "CCN_1119_01", "CCN_784_01", "CCW_2284_02","CCW_2349_03", "CE7_242_02", "CE7_284_01", "CE7_39_01", "CEB_1675_01","CER_145_03", "CER_23_01", "CER_235_02", "CER_378_10", "CET_1056_02","CET_680_01", "CET_705_01", "CET_797_01", "CET_838_01", "CET_879_05","CET_946_03", "CET_986_01", "CEY_2977_01", "CJ3_107_02", "CJ3_114_03","CJ3_20_01", "CJ3_81_01", "CK2_112_01", "CK2_22_01", "CK2_392_01","CK2_42_01", "CK2_75_01", "CKC_1776_01", "CKC_1777_01", "CKC_1823_01","CKC_1824_01", "CKC_1860_01", "CKC_1883_01", "CKC_1883_02", "CKC_2127_01","CMN_1439_02", "CRM_5767_01", "CRM_5770_03", "CRM_5789_01", "CS2_110_01","CS2_131_01", "CS2_139_01", "CS2_187_01", "CS2_187_03", "CS2_231_03","CS2_249_02", "CS2_301_01", "CS2_35_01", "CS2_58_02", "EV6_16_01","EV6_206_02", "EV6_240_01", "EV6_244_02", "EV6_28_01", "EV6_30_01","EV6_32_01", "EV6_450_01", "EV6_69_01", "EV6_80_01", "EV6_91_01","FAC_1019_01", "FAC_1026_01", "FAC_1027_01", "FAC_1235_01", "FAC_1269_05","FAC_1270_05", "FAC_1393_01", "FAC_1406_03", "FAC_933_01", "FAC_950_01","FAC_960_01", "FED_105_01", "FED_120_02", "FED_21_02", "FED_281_02","FED_302_02", "FED_53_01", "FED_8_05", "FEF_498_03", "FEF_674_03","FR2_410_01", "FR2_557_02", "FR2_593_01", "FR2_691_01", "FR4_232_01","FR4_331_01", "FR4_346_01", "FS7_818_01", "FS7_919_01", "FU0_368_02","FYT_1138_01", "FYT_1183_01", "FYT_901_05", "G08_1336_01", "G1E_385_01","G1N_824_01", "G1N_860_01", "G1N_868_01", "G1N_975_01", "GU5_854_01","GUJ_423_01", "GUJ_501_01", "GUJ_611_01", "GUJ_629_03", "GUJ_700_01","GV0_10_01", "GV0_104_01", "GV0_111_01", "GV0_122_01", "GV0_160_01","GV0_232_02", "GV2_1465_01", "GV2_1899_01", "GV6_2683_01", "GW6_297_01","GW6_306_05", "GW6_307_01", "GW6_322_01", "GW6_330_02", "GW6_335_01","GW6_338_01", "GW6_367_02", "GW6_373_01", "GW6_407_01", "GW6_411_01","GW6_413_01", "GW6_421_01", "GW6_423_01", "GW6_424_01", "GW6_428_01","GW6_447_01", "GWM_480_01", "GWM_533_02", "GWM_554_02", "GWM_554_03","GWM_609_01", "GWM_609_04", "GWM_610_01", "GWM_730_01", "GWM_731_01","GWM_738_01", "GWM_804_06", "GWM_815_01", "GWM_832_03", "GVP_179_01","GVP_211_01", "GVP_393_02", "GVP_443_02", "GVP_710_01", "H0B_171_04","H0B_216_01", "H0B_265_01", "H0B_32_01", "H0B_361_03", "H0B_365_01","H0B_369_01", "H0B_74_01", "H0B_93_01", "H10_1002_01", "H10_1032_04","H10_653_01", "H10_803_01", "H10_824_01", "H10_825_03", "H10_881_01","H10_986_01", "H78_851_04", "H78_891_01", "H78_946_04", "H79_1959_19","H7S_110_05", "H7S_130_06", "H7S_131_03", "H7S_131_04", "H7S_146_01","H7S_148_01", "H7S_164_01", "H7S_179_01", "H7S_54_01", "H7S_56_05","H7S_62_03", "H7S_79_01", "H7S_8_01", "H7S_81_01", "H7S_83_01","H7S_87_01", "H7S_92_03", "H7X_1028_02", "H7X_1091_01", "H7X_691_01","H7X_695_01", "H8H_2917_01", "H8K_153_01", "H8K_55_01", "H8M_1897_01","H8M_2104_02", "H8T_3316_03", "H98_3204_01", "H98_3410_01", "H98_3490_02","H9R_130_02", "H9R_39_01", "H9S_1297_01", "HA2_3107_02", "HA2_3284_01","HPY_754_04", "HPY_785_09", "HPY_799_03", "HPY_807_04", "HPY_830_04","HPY_838_02", "HPY_843_01", "HPY_869_11", "HR7_190_01", "HR7_440_01","HTP_540_01", "HTP_585_01", "HTP_588_05", "HTP_593_01", "HTP_601_01","HTP_613_01", "HTP_648_02", "HTW_197_01", "HTW_494_01", "HTW_750_01","HWL_2770_01", "HWL_2919_01", "HWM_45_01", "HWM_45_02", "HXY_1047_03","HXY_701_01", "HXY_781_01", "HXY_783_01", "HXY_784_01", "HXY_836_01","HXY_931_01", "HXY_963_01", "HXY_972_01", "HXY_985_03", "HY6_1024_01","HY6_1025_01", "HY6_1164_01", "HY6_1223_01", "HY6_988_03", "HY6_989_01","HY8_160_01", "HY8_164_01", "HY8_292_03", "HY8_316_01", "HY9_778_03","HY9_845_02", "HYX_235_08", "HYX_245_01", "HYX_88_01", "J12_1474_02","J12_1492_01", "J12_1571_01", "J12_1845_01", "J14_341_01", "J18_597_04","J18_698_02", "J18_759_01", "J18_828_01", "J3R_197_01", "J3R_219_02","J3R_277_04", "J3T_267_01", "J3T_269_02", "J3T_57_02", "J41_41_02","J41_58_03", "J9B_133_03", "J9B_341_02", "J9B_341_03", "J9D_147_05","J9D_218_01", "J9D_411_01", "J9D_616_01", "J9D_616_02", "JNB_563_02","JT7_118_01", "JT7_129_02", "JT7_218_02", "JT7_344_02", "JXS_3663_01","JXU_407_01", "JXU_468_02", "JXU_559_01", "JXV_1439_04", "JXV_1592_01","JY1_100_01"), class = "factor"), GENRE = structure(c(1L, 1L,1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L,5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,5L, 5L), .Label = c("Academic Prose", "Conversation", "News","Novels", "Popular Science"), class = "factor"), NODE = structure(c(9L,10L, 10L, 10L, 4L, 10L, 71L, 35L, 49L, 6L, 5L, 15L, 28L, 44L,64L, 64L, 28L, 28L, 18L, 18L, 32L, 18L, 58L, 10L, 72L, 28L, 18L,10L, 64L, 10L, 35L, 64L, 64L, 69L, 8L, 10L, 50L, 69L, 49L, 49L,15L, 69L, 10L, 49L, 8L, 64L, 49L, 10L, 69L, 18L, 61L, 67L, 67L,61L, 57L, 69L, 11L, 10L, 64L, 10L, 59L, 61L, 49L, 10L, 59L, 1L,61L, 35L, 54L, 54L, 39L, 44L, 61L, 64L, 69L, 1L, 23L, 49L, 49L,8L, 69L, 49L, 69L, 49L, 49L, 69L, 35L, 49L, 49L, 49L, 35L, 10L,49L, 48L, 10L, 49L, 11L, 44L, 50L, 11L, 50L, 69L, 49L, 10L, 59L,68L, 47L, 69L, 49L, 35L, 29L, 8L, 49L, 50L, 35L, 10L, 35L, 8L,35L, 8L, 10L, 35L, 10L, 10L, 10L, 35L, 44L, 61L, 35L, 44L, 28L,47L, 39L, 39L, 49L, 61L, 43L, 60L, 19L, 10L, 10L, 10L, 44L, 44L,62L, 44L, 10L, 59L, 10L, 61L, 1L, 53L, 33L, 10L, 8L, 8L, 64L,64L, 10L, 57L, 61L, 64L, 66L, 19L, 61L, 64L, 10L, 10L, 8L, 19L,35L, 28L, 10L, 61L, 35L, 42L, 35L, 28L, 32L, 64L, 10L, 18L, 28L,25L, 35L, 35L, 10L, 18L, 10L, 22L, 55L, 28L, 10L, 1L, 55L, 51L,1L, 38L, 28L, 28L, 33L, 10L, 44L, 29L, 16L, 8L, 28L, 69L, 32L,10L, 61L, 20L, 35L, 10L, 28L, 10L, 32L, 10L, 46L, 59L, 64L, 35L,66L, 2L, 35L, 28L, 30L, 18L, 69L, 32L, 10L, 28L, 17L, 36L, 64L,61L, 10L, 64L, 33L, 3L, 37L, 26L, 28L, 64L, 44L, 28L, 64L, 64L,6L, 6L, 64L, 50L, 32L, 8L, 64L, 50L, 28L, 24L, 18L, 47L, 35L,40L, 24L, 55L, 44L, 22L, 1L, 49L, 44L, 18L, 45L, 63L, 64L, 35L,12L, 35L, 10L, 35L, 10L, 10L, 10L, 44L, 44L, 44L, 65L, 44L, 55L,32L, 49L, 64L, 39L, 69L, 1L, 60L, 7L, 14L, 44L, 33L, 10L, 19L,10L, 70L, 53L, 8L, 61L, 61L, 44L, 61L, 65L, 28L, 68L, 69L, 27L,61L, 28L, 72L, 34L, 61L, 32L, 10L, 49L, 35L, 49L, 10L, 10L, 69L,39L, 40L, 19L, 59L, 53L, 49L, 49L, 44L, 49L, 35L, 49L, 61L, 61L,1L, 10L, 28L, 49L, 35L, 49L, 61L, 50L, 69L, 35L, 61L, 35L, 50L,10L, 28L, 69L, 61L, 21L, 69L, 29L, 35L, 35L, 35L, 11L, 69L, 8L,41L, 56L, 35L, 61L, 69L, 49L, 49L, 49L, 1L, 13L, 64L, 64L, 52L,44L, 64L, 64L, 50L, 49L, 69L, 11L, 59L, 49L, 31L), .Label = c("apparent","appropriate", "awful", "axiomatic", "best", "better", "breathtaking","certain", "characteristic", "clear", "conceivable", "convenient","crucial", "cruel", "desirable", "disappointing", "emphatic","essential", "evident", "expected", "extraordinary", "fair","fortunate", "Funny", "good", "great", "imperative", "important","impossible", "incredible", "inescapable", "inevitable", "interesting","ironic", "likely", "Likely", "lucky", "ludicrous", "natural","necessary", "needful", "notable", "noteworthy", "obvious", "odd","paradoxical", "plain", "plausible", "possible", "probable","proper", "relevant", "remarkable", "revealing", "right", "Sad","self-evident", "sensible", "significant", "striking", "surprising","symptomatic", "terrible", "true", "typical", "understandable","unexpected", "unfortunate", "unlikely", "unreasonable", "untrue","vital"), class = "factor")), .Names = c("ID", "GENRE", "NODE"), class = "data.frame", row.names = c(NA, -388L)) 解决方案 As I mentioned already: facet_wrap is not intended for having individual scales. At least I didn't find a solution. Hence, setting the labels in scale_x_discrete did not bring the desired result.But this my workaround:library(plyr)library(ggplot2)nodeCount <- ddply( df, c("GENRE", "NODE"), nrow )nodeCount$factors <- paste( nodeCount$GENRE, nodeCount$NODE, sep ="." )nodeCount <- nodeCount[ order( nodeCount$GENRE, nodeCount$V1, decreasing=TRUE ), ]nodeCount$factors <- factor( nodeCount$factors, levels=nodeCount$factors )head(nodeCount) GENRE NODE V1 factors121 Popular Science possible 14 Popular Science.possible128 Popular Science surprising 11 Popular Science.surprising116 Popular Science likely 9 Popular Science.likely132 Popular Science unlikely 9 Popular Science.unlikely103 Popular Science clear 7 Popular Science.clear129 Popular Science true 5 Popular Science.trueg <- ggplot( nodeCount, aes( y=V1, x = factors ) ) + geom_bar() + scale_x_discrete( breaks=NULL ) + # supress tick marks on x axis facet_wrap( ~GENRE, scale="free_x" ) + geom_text( aes( label = NODE, y = V1+2 ), angle = 45, vjust = 0, hjust=0, size=3 )Which gives: 这篇关于内部排序的方面ggplot2的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持! 上岸,阿里云!
07-19 04:10